Page 1

Displaying 1 – 10 of 10

Showing per page

Segmentation of MRI data by means of nonlinear diffusion

Radomír Chabiniok, Radek Máca, Michal Beneš, Jaroslav Tintěra (2013)

Kybernetika

The article focuses on the application of the segmentation algorithm based on the numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This equation is related to the motion of curves by mean curvature. It exhibits several suitable mathematical properties including stable solution profile. This allows the user to follow accurately the position of the segmentation curve by bringing it quickly to the vicinity of the segmented object and by approaching the details...

Singular limit of a transmission problem for the parabolic phase-field model

Giulio Schimperna (2000)

Applications of Mathematics

A transmission problem describing the thermal interchange between two regions occupied by possibly different fluids, which may present phase transitions, is studied in the framework of the Caginalp-Fix phase field model. Dirichlet (or Neumann) and Cauchy conditions are required. A regular solution is obtained by means of approximation techniques for parabolic systems. Then, an asymptotic study of the problem is carried out as the time relaxation parameter for the phase field tends to 0 in one of...

Solvability of a class of phase field systems related to a sliding mode control problem

Michele Colturato (2016)

Applications of Mathematics

We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution.

Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method

Luise Blank, Martin Butz, Harald Garcke (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space leading...

Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method

Luise Blank, Martin Butz, Harald Garcke (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space...

Some new results on a Stefan problem in a concentrated capacity

Enrico Magenes (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.

Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model

Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze two numerical schemes of Euler type in time and C0 finite-element type with 1 -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent. The other scheme is linear...

Stefan problems with a concentrated capacity

Enrico Magenes (1998)

Bollettino dell'Unione Matematica Italiana

Vengono brevemente studiati i problemi di Stefan su «capacità concentrate»,seguendo l'approccio recentemente introdotto di G. Savaré e A. Visintin.

Currently displaying 1 – 10 of 10

Page 1