Displaying 261 – 280 of 528

Showing per page

Modelling of convective phenomena in forest fire.

M.ª Isabel Asensio, Luis Ferragut, Jacques Simon (2002)

RACSAM

We present a model coupling the fire propagation equations in a bidimensional domain representing the surface, and the air movement equations in a three dimensional domain representing an air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional convective model governed by a bidimensional equation verified by a stream function. We also present the numerical simulations of these equations.

Motion of spirals by crystalline curvature

Hitoshi Imai, Naoyuki Ishimura, TaKeo Ushijima (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Modern physics theories claim that the dynamics of interfaces between the two-phase is described by the evolution equations involving the curvature and various kinematic energies. We consider the motion of spiral-shaped polygonal curves by its crystalline curvature, which deserves a mathematical model of real crystals. Exploiting the comparison principle, we show the local existence and uniqueness of the solution.

Motion planning for a nonlinear Stefan problem

William B. Dunbar, Nicolas Petit, Pierre Rouchon, Philippe Martin (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....

Motion Planning for a nonlinear Stefan Problem

William B. Dunbar, Nicolas Petit, Pierre Rouchon, Philippe Martin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....

Non-Fourier heat removal from hot nanosystems through graphene layer

A. Sellitto, F.X. Alvarez (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.

Currently displaying 261 – 280 of 528