Page 1 Next

Displaying 1 – 20 of 39

Showing per page

Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere.

Stanislav Antontsev, Jesús Ildefonso Díaz (2007)

RACSAM

We study the boundary layer approximation of the, already classical, mathematical model which describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We start by proving the existence and uniqueness of solutions of the nondegenerate problem under assumptions implying that the temperature T and the horizontal velocity u of the gas are strictly positive: T ≥ δ > 0 and u ≥ ε > 0 (here δ and ε are given as boundary conditions in the external atmosphere)....

Mathematical and numerical analysis of radiative heat transfer in semi-transparent media

Yao-Chuang Han, Yu-Feng Nie, Zhan-Bin Yuan (2019)

Applications of Mathematics

This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm...

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite speed in the...

Mathematical description of the phase transition curve near the critical point

Tomasz Sułkowski (2007)

Applicationes Mathematicae

In this paper, by applying a simple mathematical model imitating the equation of state, behaviour of the phase transition curve near the critical point is investigated. The problem of finding the unique vapour-liquid equilibrium curve passing through the critical point is reduced to solving a nonlinear system of differential equations.

Mathematical modeling of hygro-thermal processes in deformed porous media

Beneš, Michal, Krupička, Lukáš (2019)

Programs and Algorithms of Numerical Mathematics

In this contribution we propose a model of coupled heat and moisture transport in variable saturated deformed porous media. Solution of this model provides temperature, moisture content and strain as a function of space and time. We present the detailed description of the model and a~numerical illustrative example.

Mathematical study of an evolution problem describing the thermomechanical process in shape memory alloys

Pierluigi Colli (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we prove existence, uniqueness, and continuous dependence for a one-dimensional time-dependent problem related to a thermo-mechanical model of structural phase transitions in solids. This model assumes the free energy depending on temperature, macroscopic deformation and also on the proportions of the phases. Here we neglect regularizing terms in the momentum balance equation and in the constitutive laws for the phase proportions.

Mean curvature properties for p -Laplace phase transitions

Berardino Sciunzi, Enrico Valdinoci (2005)

Journal of the European Mathematical Society

This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p -Laplacian type and a double well potential h 0 with suitable growth conditions. We prove that level sets of solutions of Δ p u = h 0 ' ( u ) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.

Mesoscopic description of boundary effects in nanoscale heat transport

F.X. Àlvarez, V.A. Cimmelli, D. Jou, A. Sellitto (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

We review some of the most important phenomena due to the phonon-wall collisions in nonlocal heat transport in nanosystems, and show how they may be described through certain slip boundary conditions in phonon hydrodynamics. Heat conduction in nanowires of different cross sections and in thin layers is analyzed, and the dependence of the thermal conductivity on the geometry, as well as on the roughness is pointed out. We also analyze the effects of the roughness of the surface of the pores on the...

Currently displaying 1 – 20 of 39

Page 1 Next