Displaying 101 – 120 of 203

Showing per page

On the spectrum of Robin Laplacian in a planar waveguide

Alex Ferreira Rossini (2019)

Czechoslovak Mathematical Journal

We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.

On Threshold Eigenvalues and Resonances for the Linearized NLS Equation

V. Vougalter (2010)

Mathematical Modelling of Natural Phenomena

We prove the instability of threshold resonances and eigenvalues of the linearized NLS operator. We compute the asymptotic approximations of the eigenvalues appearing from the endpoint singularities in terms of the perturbations applied to the original NLS equation. Our method involves such techniques as the Birman-Schwinger principle and the Feshbach map.

Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups

Pierre Del Moral, L. Miclo (2003)

ESAIM: Probability and Statistics

We present an interacting particle system methodology for the numerical solving of the Lyapunov exponent of Feynman–Kac semigroups and for estimating the principal eigenvalue of Schrödinger generators. The continuous or discrete time models studied in this work consists of N interacting particles evolving in an environment with soft obstacles related to a potential function V . These models are related to genetic algorithms and Moran type particle schemes. Their choice is not unique. We will examine...

Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups

Pierre Del Moral, L. Miclo (2010)

ESAIM: Probability and Statistics

We present an interacting particle system methodology for the numerical solving of the Lyapunov exponent of Feynman–Kac semigroups and for estimating the principal eigenvalue of Schrödinger generators. The continuous or discrete time models studied in this work consists of N interacting particles evolving in an environment with soft obstacles related to a potential function V. These models are related to genetic algorithms and Moran type particle schemes. Their choice is not unique. We...

Currently displaying 101 – 120 of 203