Étude semi-classique d'observables quantiques
This paper considers the inversion problem related to the manipulation of quantum systems using laser-matter interactions. The focus is on the identification of the field free Hamiltonian and/or the dipole moment of a quantum system. The evolution of the system is given by the Schrödinger equation. The available data are observations as a function of time corresponding to dynamics generated by electric fields. The well-posedness of the problem is proved, mainly focusing on the uniqueness of the...
We give the definitions of exact and approximate controllability for linear and nonlinear Schrödinger equations, review fundamental criteria for controllability and revisit a classical “No-go” result for evolution equations due to Ball, Marsden and Slemrod. In Section 2 we prove corresponding results on non-controllability for the linear Schrödinger equation and distributed additive control, and we show that the Hartree equation of quantum chemistry with bilinear control is not controllable...
A new method to solve stationary one-dimensional Schroedinger equation is investigated. Solutions are described by means of representation of circles with multiple winding number. The results are demonstrated using the well-known analytical solutions of the Schroedinger equation.
We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the -adic numbers. We apply this theory to the study of elliptic operators over the -adic numbers and determine their asymptotic spectral behavior.