Application of the Gel'fand matrix method to the missing label problem in classical kinematical Lie algebras.
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific braided monoidal...
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup from every group with a finite subgroup and IP quasigroup transversal subject to certain conditions. We identify the octonions quasigroup as transversal in an order 128 group with subgroup and hence obtain a Hopf quasigroup as a particular case of our construction.
Binary operations on algebras of observables are studied in the quantum as well as in the classical case. It is shown that certain natural compatibility conditions with the associative product imply properties which are usually additionally required.
We present a generalization of the classical central limit theorem to the case of non-commuting random variables which are bm-independent and indexed by a partially ordered set. As the set of indices I we consider discrete lattices in symmetric positive cones, with the order given by the cones. We show that the limit measures have moments which satisfy recurrences generalizing the recurrence for the Catalan numbers.
We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.
It is a common belief among theoretical physicists that the charge conjugation of the Dirac equation has an analogy in higher dimensional space-times so that in an 8-dimensional space-time there would also be Maiorana spinors as eigenspinors of a charge conjugation, which would swap the sign of the electric charge of the Dirac equation. This article shows that this mistaken belief is based on inadequate distinction between two kinds of charge conjugation: the electric conjugation swapping the sign...