Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential.

Charles L. Fefferman, Luis A. Seco (1993)

Revista Matemática Iberoamericana

In [FS1] we announced a precise asymptotic formula for the ground-state energy of a non-relativistic atom. The purpose of this paper is to establish an elementary inequality that plays a crucial role in our proof of that formula. The inequality concerns the Thomas-Fermi potentialVTF = -y(ar) / r, a > 0, where y(r) is defined as the solution of⎧   y''(x) = x-1/2y3/2(x),⎨   y(0) = 1,⎩   y(∞) = 0.

Atomistic to Continuum limits for computational materials science

Xavier Blanc, Claude Le Bris, Pierre-Louis Lions (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The present article is an overview of some mathematical results, which provide elements of rigorous basis for some multiscale computations in materials science. The emphasis is laid upon atomistic to continuum limits for crystalline materials. Various mathematical approaches are addressed. The setting is stationary. The relation to existing techniques used in the engineering literature is investigated.

Diffusion Monte Carlo method: Numerical Analysis in a Simple Case

Mohamed El Makrini, Benjamin Jourdain, Tony Lelièvre (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove...

First-order semidefinite programming for the two-electron treatment of many-electron atoms and molecules

David A. Mazziotti (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


The ground-state energy and properties of any many-electron atom or molecule may be rigorously computed by variationally computing the two-electron reduced density matrix rather than the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state 2-RDM directly were stymied because the 2-RDM must be constrained to represent an N-electron wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM possible. The constraints in...

Multiscale Materials Modelling: Case Studies at the Atomistic and Electronic Structure Levels

Emilio Silva, Clemens Först, Ju Li, Xi Lin, Ting Zhu, Sidney Yip (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Although the intellectual merits of computational modelling across various length and time scales are generally well accepted, good illustrative examples are often lacking. One way to begin appreciating the benefits of the multiscale approach is to first gain experience in probing complex physical phenomena at one scale at a time. Here we discuss materials modelling at two characteristic scales separately, the atomistic level where interactions are specified through classical potentials and the...

On the classical non-integrability of the Hamiltonian system for hydrogen atoms in crossed electric and magnetic fields

Robert Gębarowski (2011)

Banach Center Publications

Hydrogen atoms placed in external fields serve as a paradigm of a strongly coupled multidimensional Hamiltonian system. This system has been already very extensively studied, using experimental measurements and a wealth of theoretical methods. In this work, we apply the Morales-Ramis theory of non-integrability of Hamiltonian systems to the case of the hydrogen atom in perpendicular (crossed) static electric and magnetic uniform fields.

On the current of large atoms in strong magnetic fields

Søren Fournais (2000)

Journées équations aux dérivées partielles

In this talk I will discuss recent results on the magnetisation/current of large atoms in strong magnetic fields. It is known from the work (E. Lieb, J.P. Solovej, and J. Yngvason, “Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions”, Commun. Math. Phys. (1994), no. 161, 77-124) of Lieb, Solovej and Yngvason that the energy and density of atoms in strong magnetic fields are given to highest order by a Magnetic Thomas Fermi theory (MTF-theory) when the magnetic field strength...

Semiclassics of the quantum current in very strong magnetic fields

Soren Fournais (2002)

Annales de l’institut Fourier

We prove a formula for the current in an electron gas in a semiclassical limit corresponding to strong, constant, magnetic fields. Little regularity is assumed for the scalar potential V . In particular, the result can be applied to the mean field from magnetic Thomas-Fermi theory V MTF . The proof is based on an estimate on the density of states in the second Landau band.

Currently displaying 1 – 20 of 34

Page 1 Next