A limit theorem for the position of a particle in the Lorentz model.
We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nosé-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step.
We consider a parabolic equation which describes the gravitational interaction of particles. Existence of solutions and their convergence to stationary states are studied.
Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...
Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann...
We give two direct proofs of Sobolev estimates for the positive part of Boltzmann's kernel. The first deals with a cross section with separated variables; no derivative is needed in this case. The second is concerned with a general cross section having one derivative in the angular variable.
Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...
We consider a generic diffusion on the 1D torus and give a simple representation formula for the large deviation rate functional of its invariant probability measure, in the limit of vanishing noise. Previously, this rate functional had been characterized by M. I. Freidlin and A. D. Wentzell as solution of a rather complex optimization problem. We discuss this last problem in full generality and show that it leads to our formula. We express the rate functional by means of a geometric transformation...
We propose an unconditionally stable semi-implicit time discretization of the phase field crystal evolution. It is based on splitting the underlying energy into convex and concave parts and then performing H-1 gradient descent steps implicitly for the former and explicitly for the latter. The splitting is effected in such a way that the resulting equations are linear in each time step and allow an extremely simple implementation and efficient solution. We provide the associated stability and error...
We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is a 2 by 2 matrix...
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.