Displaying 21 – 40 of 75

Showing per page

A Metropolis adjusted Nosé-Hoover thermostat

Benedict Leimkuhler, Sebastian Reich (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nosé-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step.

A numerical scheme for the quantum Boltzmann equation with stiff collision terms

Francis Filbet, Jingwei Hu, Shi Jin (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms⋆

Francis Filbet, Jingwei Hu, Shi Jin (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann...

A proof of the smoothing properties of the positive part of Boltzmann's kernel.

François Bouchut, Laurent Desvillettes (1998)

Revista Matemática Iberoamericana

We give two direct proofs of Sobolev estimates for the positive part of Boltzmann's kernel. The first deals with a cross section with separated variables; no derivative is needed in this case. The second is concerned with a general cross section having one derivative in the angular variable.

A quasi-variational inequality problem arising in the modeling of growing sandpiles

John W. Barrett, Leonid Prigozhin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...

A representation formula for large deviations rate functionals of invariant measures on the one dimensional torus

Alessandra Faggionato, Davide Gabrielli (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a generic diffusion on the 1D torus and give a simple representation formula for the large deviation rate functional of its invariant probability measure, in the limit of vanishing noise. Previously, this rate functional had been characterized by M. I. Freidlin and A. D. Wentzell as solution of a rather complex optimization problem. We discuss this last problem in full generality and show that it leads to our formula. We express the rate functional by means of a geometric transformation...

A simple and efficient scheme for phase field crystal simulation

Matt Elsey, Benedikt Wirth (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose an unconditionally stable semi-implicit time discretization of the phase field crystal evolution. It is based on splitting the underlying energy into convex and concave parts and then performing H-1 gradient descent steps implicitly for the former and explicitly for the latter. The splitting is effected in such a way that the resulting equations are linear in each time step and allow an extremely simple implementation and efficient solution. We provide the associated stability and error...

A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation

O. Awono, J. Tagoudjeu (2010)

Mathematical Modelling of Natural Phenomena

We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is a 2 by 2 matrix...

A stochastic min-driven coalescence process and its hydrodynamical limit

Anne-Laure Basdevant, Philippe Laurençot, James R. Norris, Clément Rau (2011)

Annales de l'I.H.P. Probabilités et statistiques

A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.

Currently displaying 21 – 40 of 75