Page 1

Displaying 1 – 2 of 2

Showing per page

Random hysteresis loops

Gioia Carinci (2013)

Annales de l'I.H.P. Probabilités et statistiques

Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order N - 2 / 3 , N the size of the system, the “critical” hysteresis loop becomes random.

Resonance in Preisach systems

Pavel Krejčí (2000)

Applications of Mathematics

This paper deals with the asymptotic behavior as t of solutions u to the forced Preisach oscillator equation w ¨ ( t ) + u ( t ) = ψ ( t ) , w = u + 𝒫 [ u ] , where 𝒫 is a Preisach hysteresis operator, ψ L ( 0 , ) is a given function and t 0 is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function ψ (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show...

Currently displaying 1 – 2 of 2

Page 1