Page 1

Displaying 1 – 5 of 5

Showing per page

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Fokker-Planck equation in bounded domain

Laurent Chupin (2010)

Annales de l’institut Fourier

We study the existence and the uniqueness of a solution  ϕ to the linear Fokker-Planck equation - Δ ϕ + div ( ϕ F ) = f in a bounded domain of  d when F is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.

Currently displaying 1 – 5 of 5

Page 1