De Sitter-invariant field equations
In questo lavoro si dà una definizione di divergenza fra cronotopi della Relatività Generale e si costruisce un criterio per l'identificazione dei punti eventi di cronotopi divergenti che appartengono ad una classe consistente con la presenza di campi elettromagnetici nel vuoto.
In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.
In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.