A class of combinatorial problems with polynomially solvable large scale set covering/partitioning relaxations
A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization of the differentiable function is considered, which consists in corrections (based on the idea of conjugate directions) of difference vectors for better satisfaction of the previous quasi-Newton conditions. In comparison with [11], more previous iterations can be utilized here. For quadratic objective functions, the improvement of convergence is the best one in some sense, all stored corrected...
A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy...
We employ the active set strategy which was proposed by Facchinei for solving large scale bound constrained optimization problems. As the special structure of the bound constrained problem, a simple rule is used for updating the multipliers. Numerical results show that the active set identification strategy is practical and efficient.