Displaying 21 – 40 of 135

Showing per page

An infinite horizon predictive control algorithm based on multivariable input-output models

Maciej Ławryńczuk, Piotr Tatjewski (2004)

International Journal of Applied Mathematics and Computer Science

In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints needs solving...

An interior point algorithm for convex quadratic programming with strict equilibrium constraints

Rachid Benouahboun, Abdelatif Mansouri (2005)

RAIRO - Operations Research - Recherche Opérationnelle

We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of O ( n L ) number of iterations, where L is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton’s method.

An interior point algorithm for convex quadratic programming with strict equilibrium constraints

Rachid Benouahboun, Abdelatif Mansouri (2010)

RAIRO - Operations Research

We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of O ( n L ) number of iterations, where L is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton's method.

An optimal algorithm with Barzilai-Borwein steplength and superrelaxation for QPQC problem

Pospíšil, Lukáš (2013)

Programs and Algorithms of Numerical Mathematics

We propose a modification of MPGP algorithm for solving minimizing problem of strictly convex quadratic function subject to separable spherical constraints. This active set based algorithm explores the faces by the conjugate gradients and changes the active sets and active variables by the gradient projection with the Barzilai-Borwein steplength. We show how to use the algorithm for the solution of separable and equality constraints. The power of our modification is demonstrated on the solution...

Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming

Saeed Ketabchi, Malihe Behboodi-Kahoo (2013)

Kybernetika

In this paper, the augmented Lagrangian method is investigated for solving recourse problems and obtaining their normal solution in solving two-stage stochastic linear programming problems. The objective function of stochastic linear programming problem is piecewise linear and non-differentiable. Therefore, to use a smooth optimization methods, the objective function is approximated by a differentiable and piecewise quadratic function. Using quadratic approximation, it is required to obtain the...

Characterizations of the Solution Sets of Generalized Convex Minimization Problems

Ivanov, Vsevolod (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.In this paper we obtain some simple characterizations of the solution sets of a pseudoconvex program and a variational inequality. Similar characterizations of the solution set of a quasiconvex quadratic program are derived. Applications of these characterizations are given.

Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games

Kristal K. Trejo, Julio B. Clempner, Alexander S. Poznyak (2015)

International Journal of Applied Mathematics and Computer Science

In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations in the...

Conjugate gradient algorithms for conic functions

Ladislav Lukšan (1986)

Aplikace matematiky

The paper contains a description and an analysis of two modifications of the conjugate gradient method for unconstrained minimization which find a minimum of the conic function after a finite number of steps. Moreover, further extension of the conjugate gradient method is given which is based on a more general class of the model functions.

Currently displaying 21 – 40 of 135