Displaying 181 – 200 of 287

Showing per page

Penalties, Lagrange multipliers and Nitsche mortaring

Christian Grossmann (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.

Piecewise-polynomial signal segmentation using convex optimization

Pavel Rajmic, Michaela Novosadová, Marie Daňková (2017)

Kybernetika

A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters...

Projection method with level control in convex minimization

Robert Dylewski (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study a projection method with level control for nonsmoooth convex minimization problems. We introduce a changeable level parameter to level control. The level estimates the minimal value of the objective function and is updated in each iteration. We analyse the convergence and estimate the efficiency of this method.

Properties of projection and penalty methods for discretized elliptic control problems

Andrzej Cegielski, Christian Grossmann (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, properties of projection and penalty methods are studied in connection with control problems and their discretizations. In particular, the convergence of an interior-exterior penalty method applied to simple state constraints as well as the contraction behavior of projection mappings are analyzed. In this study, the focus is on the application of these methods to discretized control problem.

Currently displaying 181 – 200 of 287