Page 1

Displaying 1 – 7 of 7

Showing per page

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution of the...

Saddle points criteria via a second order η -approximation approach for nonlinear mathematical programming involving second order invex functions

Tadeusz Antczak (2011)

Kybernetika

In this paper, by using the second order η -approximation method introduced by Antczak [3], new saddle point results are obtained for a nonlinear mathematical programming problem involving second order invex functions with respect to the same function η . Moreover, a second order η -saddle point and a second order η -Lagrange function are defined for the so-called second order η -approximated optimization problem constructed in this method. Then, the equivalence between an optimal solution in the original...

Separable convexification and DCA techniques for capacity and flow assignment problems

P. Mahey, Thai Q. Phong, H. P. L. Luna (2001)

RAIRO - Operations Research - Recherche Opérationnelle

We study a continuous version of the capacity and flow assignment problem (CFA) where the design cost is combined with an average delay measure to yield a non convex objective function coupled with multicommodity flow constraints. A separable convexification of each arc cost function is proposed to obtain approximate feasible solutions within easily computable gaps from optimality. On the other hand, DC (difference of convex functions) programming can be used to compute accurate upper bounds and...

Separable convexification and DCA techniques for capacity and flow assignment problems

P. Mahey, Thai Q. Phong, H. P.L. Luna (2010)

RAIRO - Operations Research

We study a continuous version of the capacity and flow assignment problem (CFA) where the design cost is combined with an average delay measure to yield a non convex objective function coupled with multicommodity flow constraints. A separable convexification of each arc cost function is proposed to obtain approximate feasible solutions within easily computable gaps from optimality. On the other hand, DC (difference of convex functions) programming can be used to compute accurate upper bounds and...

Simultaneous solution of linear equations and inequalities in max-algebra

Abdulhadi Aminu (2011)

Kybernetika

Let a ø p l u s b = max ( a , b ) and a ø t i m e s b = a + b for a , b . Max-algebra is an analogue of linear algebra developed on the pair of operations ( ø p l u s , ø t i m e s ) extended to matrices and vectors. The system of equations A ø t i m e s x = b and inequalities C ø t i m e s x ł e q d have each been studied in the literature. We consider a problem consisting of these two systems and present necessary and sufficient conditions for its solvability. We also develop a polynomial algorithm for solving max-linear program whose constraints are max-linear equations and inequalities.

Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique

Alaeddin Malek, Najmeh Hosseinipour-Mahani (2015)

Kybernetika

In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called Z -matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from...

Strict minimizers of order m in nonsmooth optimization problems

Tadeusz Antczak, Krzysztof Kisiel (2006)

Commentationes Mathematicae Universitatis Carolinae

In the paper, some sufficient optimality conditions for strict minima of order m in constrained nonlinear mathematical programming problems involving (locally Lipschitz) ( F , ρ ) -convex functions of order m are presented. Furthermore, the concept of strict local minimizer of order m is also used to state various duality results in the sense of Mond-Weir and in the sense of Wolfe for such nondifferentiable optimization problems.

Currently displaying 1 – 7 of 7

Page 1