Page 1

Displaying 1 – 4 of 4

Showing per page

Caracterización algebraica de las aristas infinitas en el conjunto dual factible de un PSI-lineal.

Jesús T. Pastor Ciurana (1987)

Trabajos de Investigación Operativa

Las propiedades geométricas del conjunto factible del dual de un problema semiinfinito lineal son análogas a las correspondientes para el caso finito. En este trabajo mostramos cómo, a partir de la caracterización algebraica de vértices y direcciones extremas, se consigue la correspondiente para aristas infinitas, estableciéndose así las bases para una extensión del método simplex a programas semiinfinitos lineales.

Characterizations of ɛ-duality gap statements for constrained optimization problems

Horaţiu-Vasile Boncea, Sorin-Mihai Grad (2013)

Open Mathematics

In this paper we present different regularity conditions that equivalently characterize various ɛ-duality gap statements (with ɛ ≥ 0) for constrained optimization problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex spaces, respectively. These regularity conditions are formulated by using epigraphs and ɛ-subdifferentials. When ɛ = 0 we rediscover recent results on stable strong and total duality and zero duality gap from the literature.

Condiciones necesarias de optimalidad en programación semi-infinita lineal: cualificaciones de restricciones y propiedades del conjunto posible.

Teresa León, Enriqueta Vercher (1994)

Qüestiió

En este trabajo se establece una caracterización de las soluciones óptimas para el problema continuo de Programación Semi-Infinita Lineal, donde el conjunto de índices es un compacto de Rp. Para la demostración de la condición necesaria de optimalidad se ha utilizado una extensión de la cualificación de restricciones de Mangasarian-Fromovitz. Hemos probado que dicha cualificación es imprescindible para asegurar que no hay desigualdades inestables en el conjunto posible y para que existan puntos...

Condiciones suficientes para la existencia de solución óptima en un programa semi-infinito.

Miguel Angel Goberna Torrent, Jesús T. Pastor Ciurana (1983)

Trabajos de Estadística e Investigación Operativa

Bajo condiciones muy generales, la acotación del conjunto factible en un problema de Programación Semi-Infinita garantiza la existencia de solución óptima del problema. Por ello, se estudian en la primera parte condiciones suficientes para la acotación del conjunto de soluciones de un sistema de infinitas ecuaciones. En la segunda parte se dan condiciones de diversa índole que involucran a la función objetivo de distintas maneras, a saber, a través de la función de Lagrange asociada al problema,...

Currently displaying 1 – 4 of 4

Page 1