Application de la théorie des graphes au choix des investissements à court terme dans un réseau électrique sujet à avaries
Given a weighted undirected graph G = (V,E), a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of G. Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...
In this paper, a graph partitioning problem that arises in the design of SONET/SDH networks is defined and formalized. Approximation algorithms with performance guarantees are presented. To solve this problem efficiently in practice, fast greedy algorithms and a tabu-search method are proposed and analyzed by means of an experimental study.
In this paper, a graph partitioning problem that arises in the design of SONET/SDH networks is defined and formalized. Approximation algorithms with performance guarantees are presented. To solve this problem efficiently in practice, fast greedy algorithms and a tabu-search method are proposed and analyzed by means of an experimental study.
This paper is motivated by operating self service transport systems that flourish nowadays. In cities where such systems have been set up with bikes, trucks travel to maintain a suitable number of bikes per station. It is natural to study a version of the C-delivery TSP defined by Chalasani and Motwani in which, unlike their definition, C is part of the input: each vertex v of a graph G=(V,E) has a certain amount xv of a commodity and wishes to have an amount equal to yv (we assume that and all quantities...
This paper is motivated by operating self service transport systems that flourish nowadays. In cities where such systems have been set up with bikes, trucks travel to maintain a suitable number of bikes per station. It is natural to study a version of the C-delivery TSP defined by Chalasani and Motwani in which, unlike their definition, C is part of the input: each vertex v of a graph G=(V,E) has a certain amount xv of a commodity and wishes to have an amount equal to yv (we assume that and all quantities...
Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...
Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...
We present a Branch-and-Cut algorithm where the volume algorithm is applied instead of the traditionally used dual simplex algorithm to the linear programming relaxations in the root node of the search tree. This means that we use fast approximate solutions to these linear programs instead of exact but slower solutions. We present computational results with the Steiner tree and Max-Cut problems. We show evidence that one can solve these problems much faster with the volume algorithm based...
This paper considers a variant of the bottleneck transportation problem. For each supply-demand point pair, the transportation time is an independent random variable. Preference of each route is attached. Our model has two criteria, namely: minimize the transportation time target subject to a chance constraint and maximize the minimal preference among the used routes. Since usually a transportation pattern optimizing two objectives simultaneously does not exist, we define non-domination in this...
Given a graph G = (V,E) and a “cost function” (provided by an oracle), the problem [PCliqW] consists in finding a partition into cliques of V(G) of minimum cost. Here, the cost of a partition is the sum of the costs of the cliques in the partition. We provide a polynomial time dynamic program for the case where G is an interval graph and f belongs to a subclass of submodular set functions, which we call “value-polymatroidal”. This provides a common solution for various generalizations of the...