Displaying 61 – 80 of 242

Showing per page

Shape and topology optimization of the robust compliance via the level set method

François Jouve, Grégoire Allaire, Frédéric de Gournay (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute it....

Shape and topology optimization of the robust compliance via the level set method

Frédéric de Gournay, Grégoire Allaire, François Jouve (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute...

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising....

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising. ...

Simulated Annealing and Tabu Search for Discrete-Continuous Project Scheduling with Discounted Cash Flows

Grzegorz Waligóra (2014)

RAIRO - Operations Research - Recherche Opérationnelle

Discrete-continuous project scheduling problems with positive discounted cash flows and the maximization of the NPV are considered. We deal with a class of these problems with an arbitrary number of discrete resources and one continuous, renewable resource. Activities are nonpreemptable, and the processing rate of an activity is a continuous, increasing function of the amount of the continuous resource allotted to the activity at a time. Three common payment models – Lump Sum Payment, Payments at...

Simultaneous routing and flow rate optimization in energy-aware computer networks

Przemysław Jaskóła, Piotr Arabas, Andrzej Karbowski (2016)

International Journal of Applied Mathematics and Computer Science

The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The...

Simultaneous solution of linear equations and inequalities in max-algebra

Abdulhadi Aminu (2011)

Kybernetika

Let a ø p l u s b = max ( a , b ) and a ø t i m e s b = a + b for a , b . Max-algebra is an analogue of linear algebra developed on the pair of operations ( ø p l u s , ø t i m e s ) extended to matrices and vectors. The system of equations A ø t i m e s x = b and inequalities C ø t i m e s x ł e q d have each been studied in the literature. We consider a problem consisting of these two systems and present necessary and sufficient conditions for its solvability. We also develop a polynomial algorithm for solving max-linear program whose constraints are max-linear equations and inequalities.

Slice convergence : stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM : COCV 9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d’Attouch-Wets est stable par une classe d’opérations classiques de l’analyse convexe, lorsque les limites des suites d’ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Currently displaying 61 – 80 of 242