On the velocity projection map for polyhedral Skorokhod problems.
A matrix in -algebra (fuzzy matrix) is called weakly robust if is an eigenvector of only if is an eigenvector of . The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an algorithm for checking the weak robustness is described.
A partitioning algorithm for the Euclidean matching problem in is introduced and analyzed in a probabilistic model. The algorithm uses elements from the fixed dissection algorithm of Karp and Steele (1985) and the Zig-Zag algorithm of Halton and Terada (1982) for the traveling salesman problem. The algorithm runs in expected time and approximates the optimal matching in the probabilistic sense.
FRAP (Fluorescence Recovery After Photobleaching) is a measurement technique for determination of the mobility of fluorescent molecules (presumably due to the diffusion process) within the living cells. While the experimental setup and protocol are usually fixed, the method used for the model parameter estimation, i.e. the data processing step, is not well established. In order to enhance the quantitative analysis of experimental (noisy) FRAP data, we firstly formulate the inverse problem of model...
We present a model1ing framework for multistage planning problems under uncertainty in the objective function coefficients and right-hand-side. A multistagy scenario analysis scheme with partial recourse is used. So, the decisíon polícy can be implemented for a given set of initial time periods (so-called implementable time stage), such that the solution for the other periods lioes not need' to be anticipated and, then, it depends upon the scenario group to occur at each stage. In any ca~e the solution...
In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions...
We consider the NP Hard problems of online Bin Covering and Packing while requiring that larger (or longer, in the one dimensional case) items be placed at the bottom of the bins, below smaller (or shorter) items — we call such a version, the LIB version of problems. Bin sizes can be uniform or variable. We look at computational studies for both the Best Fit and Harmonic Fit algorithms for uniform sized bin covering. The Best Fit heuristic for this version of the problem is introduced here. The...
We consider the NP Hard problems of online Bin Covering and Packing while requiring that larger (or longer, in the one dimensional case) items be placed at the bottom of the bins, below smaller (or shorter) items — we call such a version, the LIB version of problems. Bin sizes can be uniform or variable. We look at computational studies for both the Best Fit and Harmonic Fit algorithms for uniform sized bin covering. The Best Fit heuristic for this version of the problem is introduced here. The...