Marked continuous-time Markov chain modelling of burst behaviour for single ion channels.
A distributed-parameter (one-dimensional) anatomically detailed model for the arterial network of the arm is developed in order to carry out hemodynamics simulations. This work focuses on the specific aspects related to the model set-up. In this regard, stringent anatomical and physiological considerations have been pursued in order to construct the arterial topology and to provide a systematic estimation of the involved parameters. The model comprises 108 arterial segments, with 64 main arteries...
AMS Subj. Classification: 92C30In this study we investigated, modified and combined two existing mathematical cardiovascular models, a non-pulsatile global model and a simplified pulsatile left heart model. The first goal of the study was to integrate these models. The main objective is to have a global lumped parameter pulsatile model that predicts the pressures in the systemic and pulmonary circulation, and specifically the pulsatile pressures in the the finger arteries where real-time measurements...
This review aims at presenting a synoptic, if not exhaustive, point of view on some of the problems encountered by biologists and physicians who deal with natural cell proliferation and disruptions of its physiological control in cancer disease. It also aims at suggesting how mathematicians are naturally challenged by these questions and how they might help, not only biologists to deal theoretically with biological complexity, but also physicians to optimise therapeutics, on which last point the...
We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.
A distributed optimal control problem on and inside a homogeneous skin tissue is solved subject to Pennes' equation with Dirichlet boundary condition at one end and Rubin condition at the other end. The point heating power induced by conducting heating probe inserted at the tumour site as an unknown control function at specific depth inside biological body is preassigned. Corresponding pseudo-port Hamiltonian system is proposed. Moreover, it is proved that bioheat transfer equation forms a contraction...
A mathematical model for a problem of blood perfusion in a living tissue through a system of parallel capillaries is studied. Oxygen is assumed to be transported in two forms: freely diffusing and bounded (to erytrocytes in blood, to myoglobin in tissue). Existence of a weak solution is proved and a homogensation procedure is carried out in the case of randomly distribuited capillaries.
The aim of this paper is to study periodic solutions of Marchuk's model, i.e. the system of ordinary differential equations with time delay describing the immune reactions. The Hopf bifurcation theorem is used to show the existence of a periodic solution for some values of the delay. Periodic dynamics caused by periodic immune reactivity or periodic initial data functions are compared. Autocorrelation functions are used to check the periodicity or quasiperiodicity of behaviour.