Page 1

Displaying 1 – 5 of 5

Showing per page

High-order WENO scheme for polymerization-type equations*

Pierre Gabriel, Léon Matar Tine (2010)

ESAIM: Proceedings

Polymerization of proteins is a biochemical process involved in different diseases. Mathematically, it is generally modeled by aggregation-fragmentation-type equations. In this paper we consider a general polymerization model and propose a high-order numerical scheme to investigate the behavior of the solution. An important property of the equation is the mass conservation. The WENO scheme is built to preserve the total mass of proteins along time....

Homogeneous Systems with a Quiescent Phase

K. P. Hadeler (2008)

Mathematical Modelling of Natural Phenomena

Recently the effect of a quiescent phase (or dormant/resting phase in applications) on the dynamics of a system of differential equations has been investigated, in particular with respect to stability properties of stationary points. It has been shown that there is a general phenomenon of stabilization against oscillations which can be cast in rigorous form. Here we investigate, for homogeneous systems, the effect of a quiescent phase, and more generally, a phase with slower dynamics. We show that...

Host Factors in Viral Life Cycles

G. Pérez-Vilaró, J. Jungfleisch, V. Saludes, N. Scheller, M. Giménez-Barcons, J. Díez (2012)

Mathematical Modelling of Natural Phenomena

Viruses are obligate intracellular parasites that rely on the host cell for expansion. With the development of global analyses techniques like transcriptomics, proteomics and siRNA library screening of complete cellular gene sets, a large range of host cell factors have been discovered that either support or restrict virus growth. Here we summarize some of the recent findings and focus our discussion on the hepatitis C virus and the human immunodeficiency...

Currently displaying 1 – 5 of 5

Page 1