Page 1

Displaying 1 – 4 of 4

Showing per page

On singular perturbation problems with Robin boundary condition

Henri Berestycki, Juncheng Wei (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the following singularly perturbed elliptic problem ϵ 2 Δ u - u + f ( u ) = 0 , u > 0 in Ω , ϵ u ν + λ u = 0 on Ω , where f satisfies some growth conditions, 0 λ + , and Ω N ( N > 1 ) is a smooth and bounded domain. The cases λ = 0 (Neumann problem) and λ = + (Dirichlet problem) have been studied by many authors in recent years. We show that, there exists a generic constant λ * > 1 such that, as ϵ 0 , the least energy solution has a spike near the boundary if λ λ * , and has an interior spike near the innermost part of the domain if λ > λ * . Central to our study is the corresponding problem...

On the Use of the Hill Functions in Mathematical Models of Gene Regulatory Networks

M. Santillán (2008)

Mathematical Modelling of Natural Phenomena

Hill functions follow from the equilibrium state of the reaction in which n ligands simultaneously bind a single receptor. This result if often employed to interpret the Hill coefficient as the number of ligand binding sites in all kinds of reaction schemes. Here, we study the equilibrium states of the reactions in which n ligand bind a receptor sequentially, both non-cooperatively and in a cooperative fashion. The main outcomes of such analysis are that: n is not a good estimate, but only an upper...

Currently displaying 1 – 4 of 4

Page 1