Development and validation of a mathematical model to describe anti-cancer prodrug activation by antibody-enzyme conjugates.
A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the ‘gradient’ of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative input. Interacting Markov processes of the above form have been suggested as models for active biological transport...
Pharmacokinetics is an excellent way to introduce biomathematical modeling at the sophomore level. Students have the opportunity to develop a mathematical model of a biological phenomenon to which they all can relate. Exploring pharmacokinetics takes students through the necessary stages of mathematical modeling: determining the goals of the model, deciphering between the biological aspects to include in the model, defining the assumptions of the model, and finally, building, analyzing, using, and...