Page 1

Displaying 1 – 6 of 6

Showing per page

On a Model of Leukemia Development with a Spatial Cell Distribution

A. Ducrot, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

In this paper we propose a mathematical model to describe the evolution of leukemia in the bone marrow. The model is based on a reaction-diffusion system of equations in a porous medium. We show the existence of two stationary solutions, one of them corresponds to the normal case and another one to the pathological case. The leukemic state appears as a result of a bifurcation when the normal state loses its stability. The critical conditions of leukemia development are determined by the proliferation...

On an optimal setting of constant delays for the D-QSSA model reduction method applied to a class of chemical reaction networks

Ctirad Matonoha, Štěpán Papáček, Volodymyr Lynnyk (2022)

Applications of Mathematics

We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly...

On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy

Jurjen Duintjer Tebbens, Ctirad Matonoha, Andreas Matthios, Štěpán Papáček (2019)

Applications of Mathematics

A pharmacodynamic model introduced earlier in the literature for in silico prediction of rifampicin-induced CYP3A4 enzyme production is described and some aspects of the involved curve-fitting based parameter estimation are discussed. Validation with our own laboratory data shows that the quality of the fit is particularly sensitive with respect to an unknown parameter representing the concentration of the nuclear receptor PXR (pregnane X receptor). A detailed analysis of the influence of that parameter...

On the Mathematical Modelling of Microbial Growth: Some Computational Aspects

Markov, Svetoslav (2011)

Serdica Journal of Computing

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are...

Currently displaying 1 – 6 of 6

Page 1