In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/ element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal resistance....
In this paper we outline the hyperbolic system of governing equations
describing one-dimensional blood flow in arterial networks. This
system is numerically discretised using a discontinuous Galerkin
formulation with a spectral/hp element spatial approximation. We
apply the numerical model to arterial networks in the
placenta. Starting with a single placenta we investigate the velocity waveform
in the umbilical artery and its relationship with the distal
bifurcation geometry and the terminal resistance....
Atherosclerosis always develops in plaques, and the reasons are not clear. We test the hypothesis that plaque morphology results from a self-perpetuating propagating process driven by macrophages (Mphs). A computer model of atherogenesis was written in which the computer screen represents a surface view of a flattened area of an arterial wall on which greatly accelerated atherogenesis is depicted. Rate of Mph recruitment from blood monocytes is set as a steeply rising function of the number of...