Page 1

Displaying 1 – 20 of 20

Showing per page

Observations on the Pathophysiology and Mechanisms for Cyclic Neutropenia

C. Colijn, D. C. Dale, C. Foley, M. C. Mackey (2010)

Mathematical Modelling of Natural Phenomena

We review the basic pathology of cyclical neutropenia in both humans and the grey collie, and examine the role that mathematical modeling of hematopoietic cell production has played in our understanding of the origins of this fascinating dynamical disease.

On distribution of waiting time for the first failure followed by a limited length success run

Czesław Stępniak (2013)

Applicationes Mathematicae

Many doctors believe that a patient will survive a heart attack unless a succeeding attack occurs in a week. Treating heart attacks as failures in Bernoulli trials we reduce the lifetime after a heart attack to the waiting time for the first failure followed by a success run shorter than a given k. In order to test the "true" critical period of the lifetime we need its distribution. The probability mass function and cumulative distribution function of the waiting time are expressed in explicit and...

On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations

Luca Formaggia, Alexandra Moura, Fabio Nobile (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluid-structure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the...

On useful schema in survival analysis after heart attack

Czesław Stępniak (2014)

Discussiones Mathematicae Probability and Statistics

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

Optimal control for a class of compartmental models in cancer chemotherapy

Andrzej Świerniak, Urszula Ledzewicz, Heinz Schättler (2003)

International Journal of Applied Mathematics and Computer Science

We consider a general class of mathematical models P for cancer chemotherapy described as optimal control problems over a fixed horizon with dynamics given by a bilinear system and an objective which is linear in the control. Several two- and three-compartment models considered earlier fall into this class. While a killing agent which is active during cell division constitutes the only control considered in the two-compartment model, Model A, also two three-compartment models, Models B and C, are...

Optimal Control of a Cancer Cell Model with Delay

C. Collins, K.R. Fister, M. Williams (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we look at a model depicting the relationship of cancer cells in different development stages with immune cells and a cell cycle specific chemotherapy drug. The model includes a constant delay in the mitotic phase. By applying optimal control theory, we seek to minimize the cost associated with the chemotherapy drug and to minimize the number of tumor cells. Global existence of a solution has been shown for this model and existence...

Optimal solutions for a model of tumor anti-angiogenesis with a penalty on the cost of treatment

Urszula Ledzewicz, Vignon Oussa, Heinz Schättler (2009)

Applicationes Mathematicae

The scheduling of angiogenic inhibitors to control a vascularized tumor is analyzed as an optimal control problem for a mathematical model that was developed and biologically validated by Hahnfeldt et al. [Cancer Res. 59 (1999)]. Two formulations of the problem are considered. In the first one the primary tumor volume is minimized for a given amount of angiogenic inhibitors to be administered, while a balance between tumor reduction and the total amount of angiogenic inhibitors given is minimized...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control technique...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control...

Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda, Mauro Perego, Alessandro Veneziani (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...

Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda, Mauro Perego, Alessandro Veneziani (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...

Optimized Schwarz Methods for the Bidomain system in electrocardiology

Luca Gerardo-Giorda, Mauro Perego (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in...

Currently displaying 1 – 20 of 20

Page 1