Displaying 21 – 40 of 159

Showing per page

Approximate Aggregation Methods in Discrete Time Stochastic Population Models

L. Sanz, J. A. Alonso (2010)

Mathematical Modelling of Natural Phenomena

Approximate aggregation techniques consist of introducing certain approximations that allow one to reduce a complex system involving many coupled variables obtaining a simpler ʽʽaggregated systemʼʼ governed by a few variables. Moreover, they give results that allow one to extract information about the complex original system in terms of the behavior of the reduced one. Often, the feature that allows one to carry out such a reduction is the presence...

Asymptotic behavior of a sequence defined by iteration with applications

Stevo Stević (2002)

Colloquium Mathematicae

We consider the asymptotic behavior of some classes of sequences defined by a recurrent formula. The main result is the following: Let f: (0,∞)² → (0,∞) be a continuous function such that (a) 0 < f(x,y) < px + (1-p)y for some p ∈ (0,1) and for all x,y ∈ (0,α), where α > 0; (b) f ( x , y ) = p x + ( 1 - p ) y - s = m s ( x , y ) uniformly in a neighborhood of the origin, where m > 1, s ( x , y ) = i = 0 s a i , s x s - i y i ; (c) ( 1 , 1 ) = i = 0 m a i , m > 0 . Let x₀,x₁ ∈ (0,α) and x n + 1 = f ( x , x n - 1 ) , n ∈ ℕ. Then the sequence (xₙ) satisfies the following asymptotic formula: x ( ( 2 - p ) / ( ( m - 1 ) i = 0 m a i , m ) ) 1 / ( m - 1 ) 1 / n m - 1 .

Bacteriophage Infection Dynamics: Multiple Host Binding Sites

H. L. Smith, R. T. Trevino (2009)

Mathematical Modelling of Natural Phenomena

We construct a stochastic model of bacteriophage parasitism of a host bacteria that accounts for demographic stochasticity of host and parasite and allows for multiple bacteriophage adsorption to host. We analyze the associated deterministic model, identifying the basic reproductive number for phage proliferation, showing that host and phage persist when it exceeds unity, and establishing that the distribution of adsorbed phage on a host is binomial with slowly evolving mean. Not surprisingly,...

Bilinear system as a modelling framework for analysis of microalgal growth

Štěpán Papáček, Sergej Čelikovský, Dalibor Štys, Javier Ruiz (2007)

Kybernetika

A mathematical model of the microalgal growth under various light regimes is required for the optimization of design parameters and operating conditions in a photobioreactor. As its modelling framework, bilinear system with single input is chosen in this paper. The earlier theoretical results on bilinear systems are adapted and applied to the special class of the so-called intermittent controls which are characterized by rapid switching of light and dark cycles. Based on such approach, the following...

Canonical non-symmetrical correspondence analysis: an alternative in constrained ordination.

Priscila Willems, M. Purificación Galindo Villardon (2008)

SORT

Canonical non-symmetrical correspondence analysis is developed as an alternative method for constrained ordination, relating external information (e.g., environmental variables) with ecological data, considering species abundance as dependant on sites. Ordination axes are restricted to be linear combinations of the environmental variables, based on the information of the most abundant species. This extension and its associated unconstrained ordination method are terms of a global model that permits...

Competitive Exclusion in a Discrete Stage-Structured Two Species Model

A. S. Ackleh, P. Zhang (2009)

Mathematical Modelling of Natural Phenomena

We develop a stage-structured model that describes the dynamics of two competing species each of which have sexual and clonal reproduction. This is typical of many plants including irises. We first analyze the dynamical behavior of a single species model. We show that when the inherent net reproductive number is smaller than one then the population will go to extinction and if it is larger than one then an interior equilibrium exists and it is globally asymptotically stable. Then we analyze...

Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model

P.S. Mandal, M. Banerjee (2012)

Mathematical Modelling of Natural Phenomena

An eco-epidemiological model of susceptible Tilapia fish, infected Tilapia fish and Pelicans is investigated by several author based upon the work initiated by Chattopadhyay and Bairagi (Ecol. Model., 136, 103–112, 2001). In this paper, we investigate the dynamics of the same model by considering different parameters involved with the model as bifurcation parameters in details. Considering the intrinsic growth rate of susceptible Tilapia fish as bifurcation parameter, we demonstrate the period doubling...

Differential stability of solutions to air quality control problems in urban area

Piotr Holnicki, Jan Sokołowski, Antoni Żochowski (1987)

Aplikace matematiky

The convex optimal control problem for a system described by the parabolic equation is considered. The form of the right derivative of an optimal solution with respect to the parameter is derived. The applications to an air quality control problem are discussed. Numerical result are provided.

Drift, draft and structure: some mathematical models of evolution

Alison M. Etheridge (2008)

Banach Center Publications

Understanding the evolution of individuals which live in a structured and fluctuating environment is of central importance in mathematical population genetics. Here we outline some of the mathematical challenges arising from modelling structured populations, primarily focussing on the interplay between forwards in time models for the evolution of the population and backwards in time models for the genealogical trees relating individuals in a sample from that population. In addition to classical...

Dynamic stability and spatial heterogeneityin the individualbased modelling of a lotkavolterra gas

Jacek Waniewski, Wojciech Jędruch, Norbert Żołek (2004)

International Journal of Applied Mathematics and Computer Science

Computer simulation of a few thousands of particles moving (approximately) according to the energy and momentum conservation laws on a tessellation of squares in discrete time steps and interacting according to the predator-prey scheme is analyzed. The population dynamics are described by the basic Lotka-Volterra interactions (multiplication of preys, predation and multiplication of predators, death of predators), but the spatial effects result in differences between the system evolution and the...

Currently displaying 21 – 40 of 159