Solution forte pour des équations intégro-différentielles non linéaires paraboliques
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...
In this article we discuss some issues related to Air Pollution modelling (as viewed by the authors): subgrid parametrization, multiphase modelling, reduction of high dimensional models and data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to modelling of atmospheric trace species.
The Lyapunov exponent is a statistic that measures the sensitive dependence of the dynamic behaviour of a system on its initial conditions. Estimates of Lyapunov exponents are often used to characterize the qualitative population dynamics of insect time series. The methodology for estimation of the exponent for an observed, noisy, short ecological time series is still under development. Some progress has been made recently in providing measures of error for these exponents. Studies that do not account...
We consider a broad class of stochastic lattice predator-prey models whose main features are overviewed. In particular, this article aims at drawing a picture of the influence of spatial fluctuations, which are not accounted for by the deterministic rate equations, on the properties of the stochastic models. Here, we outline the robust scenario obeyed by most of the lattice predator-prey models with an interaction à la Lotka-Volterra. We also show how a drastically different behavior can emerge...
In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially...
Mechanisms contributing to the spread of avian influenza seem to be well identified, but how their interplay led to the current worldwide spread pattern of H5N1 influenza is still unknown due to the lack of effective global surveillance and relevant data. Here we develop some deterministic models based on the transmission cycle and modes of H5N1 and focusing on the interaction among poultry, wild birds and environment. Some of the model parameters are obtained from existing literatures, and others...
In this paper, a two-species Lotka-Volterra predator-prey model with two delays is considered. By analyzing the associated characteristic transcendental equation, the linear stability of the positive equilibrium is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and direction of Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical simulations...
The dynamics of a prey-predator system, where predator has two stages, a juvenile stage and a mature stage, is modelled by a system of three ordinary differential equations. Stability and permanence of the system are discussed. Furthermore, we consider the harvesting of prey species and obtain the maximum sustainable yield and the optimal harvesting policy.
A diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes is considered. Local stability for each constant steady state is studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions for global stability are obtained by virtue of the stability of the related FDE and some monotonous iterative sequences. Numerical simulations and reasonable biological explanations are carried out to illustrate the main results and the justification...