Page 1 Next

Displaying 1 – 20 of 39

Showing per page

Genealogies of regular exchangeable coalescents with applications to sampling

Vlada Limic (2012)

Annales de l'I.H.P. Probabilités et statistiques

This article considers a model of genealogy corresponding to a regular exchangeable coalescent (also known as 𝛯 -coalescent) started from a large finite configuration, and undergoing neutral mutations. Asymptotic expressions for the number of active lineages were obtained by the author in a previous work. Analogous results for the number of active mutation-free lineages and the combined lineage lengths are derived using the same martingale-based technique. They are given in terms of convergence in...

General Laws of Adaptation to Environmental Factors: from Ecological Stress to Financial Crisis

A. N. Gorban, E. V. Smirnova, T. A. Tyukina (2009)

Mathematical Modelling of Natural Phenomena

We study ensembles of similar systems under load of environmental factors. The phenomenon of adaptation has similar properties for systems of different nature. Typically, when the load increases above some threshold, then the adapting systems become more different (variance increases), but the correlation increases too. If the stress continues to increase then the second threshold appears: the correlation achieves maximal value, and start to decrease, but the variance continue to increase. In many...

Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency

J. Li, X. Zou (2009)

Mathematical Modelling of Natural Phenomena

In this paper, with the assumptions that an infectious disease has a fixed latent period in a population and the latent individuals of the population may disperse, we reformulate an SIR model for the population living in two patches (cities, towns, or countries etc.), which is a generalization of the classic Kermack-McKendrick SIR model. The model is given by a system of delay differential equations with a fixed delay accounting for the latency and non-local terms caused by the mobility of the...

Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion

M. Alfaro, D. Hilhorst (2010)

Mathematical Modelling of Natural Phenomena

In this note, we consider a nonlinear diffusion equation with a bistable reaction term arising in population dynamics. Given a rather general initial data, we investigate its behavior for small times as the reaction coefficient tends to infinity: we prove a generation of interface property.

Genetic and Tabu search algorithms for peptide assembly problem

Jacek Błażewicz, Marcin Borowski, Piotr Formanowicz, Tomasz Głowacki (2010)

RAIRO - Operations Research

Determining amino acid sequences of protein molecules is one of the most important issues in molecular biology. These sequences determine protein structure and functionality. Unfortunately, direct biochemical methods for reading amino acid sequences can be used for reading short sequences only. This is the reason, which makes peptide assembly algorithms an important complement of these methods. In this paper, a genetic algorithm solving the problem of short amino acid sequence assembly is presented....

Global Asymptotic Stability of Equilibria in Models for Virus Dynamics

J. Prüss, R. Zacher, R. Schnaubelt (2008)

Mathematical Modelling of Natural Phenomena

In this paper several models in virus dynamics with and without immune response are discussed concerning asymptotic behaviour. The case of immobile cells but diffusing viruses and T-cells is included. It is shown that, depending on the value of the basic reproductive number R0 of the virus, the corresponding equilibrium is globally asymptotically stable. If R0 < 1 then the virus-free equilibrium has this property, and in case R0 > 1 there is a unique disease equilibrium which takes over this...

Global attractivity of the equilibrium of a nonlinear difference equation

John R. Graef, C. Qian (2002)

Czechoslovak Mathematical Journal

The authors consider the nonlinear difference equation x n + 1 = α x n + x n - k f ( x n - k ) , n = 0 , 1 , . 1 where α ( 0 , 1 ) , k { 0 , 1 , } and f C 1 [ [ 0 , ) , [ 0 , ) ] ( 0 ) with f ' ( x ) < 0 . They give sufficient conditions for the unique positive equilibrium of (0.1) to be a global attractor of all positive solutions. The results here are somewhat easier to apply than those of other authors. An application to a model of blood cell production is given.

Currently displaying 1 – 20 of 39

Page 1 Next