Page 1

Displaying 1 – 6 of 6

Showing per page

Když se matematika potká s biologií: matematická ekologie

Vlastimil Křivan (2017)

Pokroky matematiky, fyziky a astronomie

Článek se zabývá některými aplikacemi matematiky v ekologii. V historickém kontextu ukazuje, že jednak teoretické základy populační a evoluční ekologie využívají matematické metodologie založené na diferenciálních či diferenčních rovnicích, jednak ekologické problémy motivují vznik nových matematických disciplín, jako je např. evoluční teorie her.

Když se matematika potká s biologií: matematická epidemiologie

Luděk Berec (2018)

Pokroky matematiky, fyziky a astronomie

Středověká morová epidemie způsobila smrt asi 17-22 % světové populace, z toho asi 30-60 % evropské populace, a trvalo zhruba 200 let, než se světová populace vrátila na svou původní úroveň. Epidemie dnes často zmiňované španělské chřipky v letech 1918-1920 vedla ke smrti přibližně 3-5 % světové populace. Svědky méně závažných, avšak stále dramatických epidemií jsme i v současnosti. Pandemie těžkého akutního respiračního syndromu (SARS) mezi roky 2002 a 2004, pandemie prasečí chřipky způsobené kmenem...

Kendall's tau-type rank statistics in genome data

Moonsu Kang, Pranab Kumar Sen (2008)

Applications of Mathematics

High-dimensional data models abound in genomics studies, where often inadequately small sample sizes create impasses for incorporation of standard statistical tools. Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normality of errors may not be tenable in many such interdisciplinary setups. In this study, Kendall's tau-type rank statistics are employed for statistical inference, avoiding most of parametric assumptions to a greater extent. The proposed procedures...

Kermack-McKendrick epidemic model revisited

Josef Štěpán, Daniel Hlubinka (2007)

Kybernetika

This paper proposes a stochastic diffusion model for the spread of a susceptible-infective-removed Kermack–McKendric epidemic (M1) in a population which size is a martingale N t that solves the Engelbert–Schmidt stochastic differential equation (). The model is given by the stochastic differential equation (M2) or equivalently by the ordinary differential equation (M3) whose coefficients depend on the size N t . Theorems on a unique strong and weak existence of the solution to (M2) are proved and computer...

Kermack-McKendrick epidemics vaccinated

Jakub Staněk (2008)

Kybernetika

This paper proposes a deterministic model for the spread of an epidemic. We extend the classical Kermack–McKendrick model, so that a more general contact rate is chosen and a vaccination added. The model is governed by a differential equation (DE) for the time dynamics of the susceptibles, infectives and removals subpopulation. We present some conditions on the existence and uniqueness of a solution to the nonlinear DE. The existence of limits and uniqueness of maximum of infected individuals are...

KIS: An automated attribute induction method for classification of DNA sequences

Rafał Biedrzycki, Jarosław Arabas (2012)

International Journal of Applied Mathematics and Computer Science

This paper presents an application of methods from the machine learning domain to solving the task of DNA sequence recognition. We present an algorithm that learns to recognize groups of DNA sequences sharing common features such as sequence functionality. We demonstrate application of the algorithm to find splice sites, i.e., to properly detect donor and acceptor sequences. We compare the results with those of reference methods that have been designed and tuned to detect splice sites. We also show...

Currently displaying 1 – 6 of 6

Page 1