Page 1 Next

Displaying 1 – 20 of 69

Showing per page

Sampling properties of estimators of nucleotide diversity at discovered SNP sites

Alexander Renwick, Penelope Bonnen, Dimitra Trikka, David Nelson, Ranajit Chakraborty, Marek Kimmel (2003)

International Journal of Applied Mathematics and Computer Science

SNP sites are generally discovered by sequencing regions of the human genome in a limited number of individuals. This may leave SNP sites present in the region, but containing rare mutant nucleotides, undetected. Consequently, estimates of nucleotide diversity obtained from assays of detected SNP sites are biased. In this research we present a statistical model of the SNP discovery process, which is used to evaluate the extent of this bias. This model involves the symmetric Beta distribution of...

Scaling of Stochasticity in Dengue Hemorrhagic Fever Epidemics

M. Aguiar, B.W. Kooi, J. Martins, N. Stollenwerk (2012)

Mathematical Modelling of Natural Phenomena

In this paper we analyze the stochastic version of a minimalistic multi-strain model, which captures essential differences between primary and secondary infections in dengue fever epidemiology, and investigate the interplay between stochasticity, seasonality and import. The introduction of stochasticity is needed to explain the fluctuations observed in some of the available data sets, revealing a scenario where noise and complex deterministic skeleton...

Seasonal Forcing Drives Spatio-Temporal Pattern Formation in Rabies Epidemics

N. V. Festenberg, T. Gross, B. Blasius (2010)

Mathematical Modelling of Natural Phenomena

Seasonal forcing is identified as a key pattern generating mechanism in an epidemic model of rabies dispersal. We reduce an established individual-based high-detail model down to a deterministic conceptual model. The characteristic wave pattern characterized by high densities of infected individuals is maintained throughout the reduction process. In our model it is evident that seasonal forcing is the dominant factor that drives pattern formation. In particular we show that seasonal forcing can...

Seasonality, Climate Cycles and Body Size Evolution

T. A. Troost, J. A. van Dam, B. W. Kooi, E. Tuenter (2009)

Mathematical Modelling of Natural Phenomena

The seasonality hypothesis states that climates characterized by large annual cycles select for large body sizes. In order to study the effects of seasonality on the evolution of body size, we use a model that is based on physiological rules and first principles. At the ecological time scale, our model results show that both larger productivity and seasonality may lead to larger body sizes. Our model is the first dynamic and process-based model to support the seasonality hypothesis and hence...

Selection Theorem for Systems with Inheritance

A. N. Gorban (2010)

Mathematical Modelling of Natural Phenomena

The problem of finite-dimensional asymptotics of infinite-dimensional dynamic systems is studied. A non-linear kinetic system with conservation of supports for distributions has generically finite-dimensional asymptotics. Such systems are apparent in many areas of biology, physics (the theory of parametric wave interaction), chemistry and economics. This conservation of support has a biological interpretation: inheritance. The finite-dimensional asymptotics demonstrates effects of “natural”...

Self-replication processes in nanosystems of informatics

Stefan Węgrzyn, Ryszard Winiarczyk, Lech Znamirowski (2003)

International Journal of Applied Mathematics and Computer Science

Recent research on the nanotechnological processes of molecular products and object synthesis as well as research on the nanosystems of informatics, stimulates the development of technical systems of informatics. Until now, they have been used mainly for computational tasks when, similarly to biological organisms, they allowed the development of self-replicating products and complete objects. One can focus here on the model of a circulation of materials, information and energy in a biological cell,...

Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow (2010)

Mathematical Modelling of Natural Phenomena

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral...

Semilinear perturbations of Hille-Yosida operators

Horst R. Thieme, Hauke Vosseler (2003)

Banach Center Publications

The semilinear Cauchy problem (1) u’(t) = Au(t) + G(u(t)), u ( 0 ) = x D ( A ) ¯ , with a Hille-Yosida operator A and a nonlinear operator G: D(A) → X is considered under the assumption that ||G(x) - G(y)|| ≤ ||B(x -y )|| ∀x,y ∈ D(A) with some linear B: D(A) → X, B ( λ - A ) - 1 x = λ 0 e - λ t V ( s ) x d s , where V is of suitable small strong variation on some interval [0,ε). We will prove the existence of a semiflow on [ 0 , ) × D ( A ) ¯ that provides Friedrichs solutions in L₁ for (1). If X is a Banach lattice, we replace the condition above by |G(x) - G(y)| ≤ Bv whenever...

Sensitivity studies of pollutant concentrations calculated by the UNI-DEM with respect to the input emissions

Ivan Dimov, Raya Georgieva, Tzvetan Ostromsky, Zahari Zlatev (2013)

Open Mathematics

The influence of emission levels on the concentrations of four important air pollutants (ammonia, ozone, ammonium sulphate and ammonium nitrate) over three European cities (Milan, Manchester, and Edinburgh) with different geographical locations is considered. Sensitivity analysis of the output of the Unified Danish Eulerian Model according to emission levels is provided. The Sobol’ variance-based approach for global sensitivity analysis has been applied to compute the corresponding sensitivity measures....

Sensor network design for the estimation of spatially distributed processes

Dariusz Uciński, Maciej Patan (2010)

International Journal of Applied Mathematics and Computer Science

In a typical moving contaminating source identification problem, after some type of biological or chemical contamination has occurred, there is a developing cloud of dangerous or toxic material. In order to detect and localize the contamination source, a sensor network can be used. Up to now, however, approaches aiming at guaranteeing a dense region coverage or satisfactory network connectivity have dominated this line of research and abstracted away from the mathematical description of the physical...

Significance tests to identify regulated proteins based on a large number of small samples

Frank Klawonn (2012)

Kybernetika

Modern biology is interested in better understanding mechanisms within cells. For this purpose, products of cells like metabolites, peptides, proteins or mRNA are measured and compared under different conditions, for instance healthy cells vs. infected cells. Such experiments usually yield regulation or expression values – the abundance or absence of a cell product in one condition compared to another one – for a large number of cell products, but with only a few replicates. In order to distinguish...

Simulating Kinetic Processes in Time and Space on a Lattice

J. P. Gill, K. M. Shaw, B. L. Rountree, C. E. Kehl, H. J. Chiel (2011)

Mathematical Modelling of Natural Phenomena

We have developed a chemical kinetics simulation that can be used as both an educational and research tool. The simulator is designed as an accessible, open-source project that can be run on a laptop with a student-friendly interface. The application can potentially be scaled to run in parallel for large simulations. The simulation has been successfully used in a classroom setting for teaching basic electrochemical properties. We have shown that...

Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology

J. B. Burie, A. Calonnec, A. Ducrot (2010)

Mathematical Modelling of Natural Phenomena

We investigate the structure of travelling waves for a model of a fungal disease propagating over a vineyard. This model is based on a set of ODEs of the SIR-type coupled with two reaction-diffusion equations describing the dispersal of the spores produced by the fungus inside and over the vineyard. An estimate of the biological parameters in the model suggests to use a singular perturbation analysis. It allows us to compute the speed and the profile of the travelling waves. The analytical results...

Skupinové testování – oddělující systémy

A. Jančařík, Tomáš Kepka (2021)

Pokroky matematiky, fyziky a astronomie

Otázkami spojenými s testováním vzorků se v souvislosti s pandemií covid-19 začala zabývat i širší veřejnost. Jednou z otázek, která byla v souvislosti s testováním diskutována, byla i otázka tzv. poolování. Cílem předkládaného článku je představit jeden z matematických nástrojů -- oddělující systémy, který lze při spojování vzorků a jejich následném testování efektivně využít. Všechna odvození jsou realizována jen s využitím elementární matematiky tak, aby bylo možné dosažené výsledky nejen použít...

Small positive values for supercritical branching processes in random environment

Vincent Bansaye, Christian Böinghoff (2014)

Annales de l'I.H.P. Probabilités et statistiques

Branching Processes in Random Environment (BPREs) ( Z n : n 0 ) are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times. We describe the asymptotic behavior of ( 1 Z n k | Z 0 = i ) , k , i as n . More precisely, we characterize the exponential...

Currently displaying 1 – 20 of 69

Page 1 Next