Displaying 201 – 220 of 569

Showing per page

A realization problem for positive continuoustime systems with reduced numbers of delays

Tadeusz Kaczorek (2006)

International Journal of Applied Mathematics and Computer Science

A realization problem for positive, continuous-time linear systems with reduced numbers of delays in state and in control is formulated and solved. Sufficient conditions for the existence of positive realizations with reduced numbers of delays of a given proper transfer function are established. A procedure for the computation of positive realizations with reduced numbers of delays is presented and illustrated by an example.

A reduced basis element method for the steady Stokes problem

Alf Emil Løvgren, Yvon Maday, Einar M. Rønquist (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into a series of subdomains that are deformations of a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same...

A reduction principle for global stabilization of nonlinear systems

Rachid Outbib, Gauthier Sallet (1998)

Kybernetika

The goal of this paper is to propose new sufficient conditions for dynamic stabilization of nonlinear systems. More precisely, we present a reduction principle for the stabilization of systems that are obtained by adding integrators. This represents a generalization of the well-known lemma on integrators (see for instance [BYIS] or [Tsi1]).

A relaxation theorem for partially observed stochastic control on Hilbert space

N.U. Ahmed (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we present a result on relaxability of partially observed control problems for infinite dimensional stochastic systems in a Hilbert space. This is motivated by the fact that measure valued controls, also known as relaxed controls, are difficult to construct practically and so one must inquire if it is possible to approximate the solutions corresponding to measure valued controls by those corresponding to ordinary controls. Our main result is the relaxation theorem which states that...

A repeated imitation model with dependence between stages: Decision strategies and rewards

Pablo J. Villacorta, David A. Pelta (2015)

International Journal of Applied Mathematics and Computer Science

Adversarial decision making is aimed at determining strategies to anticipate the behavior of an opponent trying to learn from our actions. One defense is to make decisions intended to confuse the opponent, although our rewards can be diminished. This idea has already been captured in an adversarial model introduced in a previous work, in which two agents separately issue responses to an unknown sequence of external inputs. Each agent's reward depends on the current input and the responses of both...

A robust controller design method and stability analysis of an underactuated underwater vehicle

Cheng Siong Chin, Micheal Wai Shing Lau, Eicher Low, Gerald Gim Lee Seet (2006)

International Journal of Applied Mathematics and Computer Science

The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integral-derivative...

A safe supervisory flight control scheme in the presence of constraints and anomalies

Giuseppe Franzè, Angelo Furfaro, Massimiliano Mattei, Valerio Scordamaglia (2015)

International Journal of Applied Mathematics and Computer Science

In this paper the hybrid supervisory control architecture developed by Famularo et al. (2011) for constrained control systems is adopted with the aim to improve safety in aircraft operations when critical events like command saturations or unpredicted anomalies occur. The capabilities of a low-computational demanding predictive scheme for the supervision of non-linear dynamical systems subject to sudden switchings amongst operating conditions and time-varying constraints are exploited in the flight...

A sample-time adjusted feedback for robust bounded output stabilization

Patricio Ordaz, Hussain Alazki, Alexander Poznyak (2013)

Kybernetika

This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain) guaranteeing...

A scratch removal method

Michal Haindl, Stanislava Šimberová (1998)

Kybernetika

We present a new type of scratch removal algorithm based on a causal adaptive multidimensional prediction. The predictor use available information from the failed pixel surrounding due to spectral and spatial correlation of multispectral data but not any information from failed pixel itself. Predictor parameters cannot be directly identified so a special approximation is introduced.

Currently displaying 201 – 220 of 569