An existence result for a linear abstract stochastic equation in Hilbert spaces
We calculate explicitly the optimal strategy for an investor with exponential utility function when the price of a single risky asset (stock) follows a discrete-time autoregressive Gaussian process. We also calculate its performance and analyse it when the trading horizon tends to infinity. Dependence of the asymptotic performance on the autoregression parameter is determined. This provides, to the best of our knowledge, the first instance of a theorem linking directly the memory of the asset price...
The article presents an extension of the theory of standard Markov decision processes on discrete spaces and with the average cost as the objective function which permits to take into account a fuzzy average cost of a trapezoidal type. In this context, the fuzzy optimal control problem is considered with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Each of these cases extends the standard optimal control problem, and for...
The classical Cayley-Hamilton theorem is extended to nonlinear time-varying systems with square and rectangular system matrices. It is shown that in both cases system matrices satisfy many equations with coefficients being the coefficients of characteristic polynomials of suitable square matrices. The proposed theorems are illustrated with numerical examples.
This paper considers the problem of robust reconstruction of simultaneous actuator and sensor faults for a class of uncertain Takagi-Sugeno nonlinear systems with unmeasurable premise variables. The proposed fault reconstruction and estimation design method with H∞ performance is used to reconstruct both actuator and sensor faults when the latter are transformed into pseudo-actuator faults by introducing a simple filter. The main contribution is to develop a sliding mode observer (SMO) with two...
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...
This paper presents delay-dependent stabilization criteria for linear time-varying delay systems. A less conservative stabilization criterion is derived by invoking a new Lyapunov-Krasovskii functional and then, extended reciprocally convex inequality in combination with Wirtinger's inequality is exploited to obtain an improved stabilization criterion where a set of nonlinear matrix inequalities is solved by applying the cone complementarity algorithm. The proposed stabilization technique transforms...
In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints needs solving...
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413–418]. Our proof follows an Ingham type approach.
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1D-wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I338 (2004) 413–418]. Our proof follows an Ingham type approach.
This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method...