The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 318

Showing per page

Condiciones algebraicas de existencia y estabilidad para el diseño de controladores para sistemas lineales multivariables interconectados.

Manuel de la Sen (1986)

Stochastica

This paper presents an algebraic design theory for interconnected systems. Usual multivariable linear systems are described in a unified way. Both square and nonsquare plants and controllers are included in the study and an easy characterization of the achievable I/O (input-to-output) and D/O (disturbance-to-output) maps is presented through the use of appropriate controllers. Sufficient conditions of stability are given.

Cone-type constrained relative controllability of semilinear fractional systems with delays

Beata Sikora, Jerzy Klamka (2017)

Kybernetika

The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function f . The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered....

Confidence and self-confidence: Perceived and real

David Pearson (2002)

International Journal of Applied Mathematics and Computer Science

The problem of modelling the dynamics of confidence levels between two individuals is investigated. A model, based on a master equation approach, is developed and presented. An important feature of the model is that self-confidence is modelled along with its interaction with confidence towards others. Simulation results are presented.

Configuring a sensor network for fault detection in distributed parameter systems

Maciej Patan, Dariusz Uciński (2008)

International Journal of Applied Mathematics and Computer Science

The problem of fault detection in distributed parameter systems (DPSs) is formulated as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A computational scheme is provided for the design of a network of observation locations in a spatial domain that are supposed to be used while detecting changes in the underlying parameters of a distributed parameter system. The setting considered relates to a situation where from among...

Conformal mapping and inverse conductivity problem with one measurement

Marc Dambrine, Djalil Kateb (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This work deals with a two-dimensional inverse problem in the field of tomography. The geometry of an unknown inclusion has to be reconstructed from boundary measurements. In this paper, we extend previous results of R. Kress and his coauthors: the leading idea is to use the conformal mapping function as unknown. We establish an integrodifferential equation that the trace of the Riemann map solves. We write it as a fixed point equation and give conditions for contraction. We conclude with a series...

Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane

Yuri L. Sachkov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.

Consensus and trajectory tracking of SISO linear multi-agent systems under switching communication topologies and formation changes

Carlos López-Limón, Javier Ruiz, Alejandro Cervantes-Herrera, Antonio Ramírez-Treviño (2013)

Kybernetika

The simultaneous problem of consensus and trajectory tracking of linear multi-agent systems is considered in this paper, where the dynamics of each agent is represented by a single-input single-output linear system. In order to solve this problem, a distributed control strategy is proposed in this work, where the trajectory and the formation of the agents are achieved asymptotically even in the presence of switching communication topologies and smooth formation changes, and ensuring the closed-loop...

Consensus of a multi-agent systems with heterogeneous delays

Branislav Rehák, Volodymyr Lynnyk (2020)

Kybernetika

The paper presents an algorithm for the solution of the consensus problem of a linear multi-agent system composed of identical agents. The control of the agents is delayed, however, these delays are, in general, not equal in all agents. The control algorithm design is based on the H -control, the results are formulated by means of linear matrix inequalities. The dimension of the resulting convex optimization problem is proportional to the dimension of one agent only but does not depend on the number...

Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles

Wen-Hai Yu, Hong-Jie Ni, Hui Dong, Dan Zhang (2020)

Kybernetika

In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the...

Consensus seeking in multi-agent systems with an active leader and communication delays

Lixin Gao, Yutao Tang, Wenhai Chen, Hui Zhang (2011)

Kybernetika

In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus....

Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm

Cheng-Lin Liu, Fei Liu (2018)

Kybernetika

This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm...

Currently displaying 61 – 80 of 318