Displaying 41 – 60 of 319

Showing per page

Comparison of the stability boundary and the frequency response stability condition in learning and repetitive control

Szathys Songschon, Richard Longman (2003)

International Journal of Applied Mathematics and Computer Science

In iterative learning control (ILC) and in repetitive control (RC) one is interested in convergence to zero tracking error as the repetitions of the command or the periods in the command progress. A condition based on steady state frequency response modeling is often used, but it does not represent the true stability boundary for convergence. In this paper we show how this useful condition differs from the true stability boundary in ILC and RC, and show that in applications of RC the distinction...

Comparison principle approach to utility maximization

Peter Imkeller, Victor Nzengang (2015)

Banach Center Publications

We consider the problem of optimal investment for maximal expected utility in an incomplete market with trading strategies subject to closed constraints. Under the assumption that the underlying utility function has constant sign, we employ the comparison principle for BSDEs to construct a family of supermartingales leading to a necessary and sufficient condition for optimality. As a consequence, the value function is characterized as the initial value of a BSDE with Lipschitz growth.

Compartmental Models of Migratory Dynamics

J. Knisley, T. Schmickl, I. Karsai (2011)

Mathematical Modelling of Natural Phenomena

Compartmentalization is a general principle in biological systems which is observable on all size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups, herds, swarms, meta-populations, and populations. Compartmental models are often used to model such phenomena, but such models can be both highly nonlinear and difficult to work with.Fortunately, there are many significant biological systems that are amenable to linear compartmental models which are often...

Complementary matrices in the inclusion principle for dynamic controllers

Lubomír Bakule, José Rodellar, Josep M. Rossell (2003)

Kybernetika

A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary...

Completitud esencial de la clase de controles basados en un proceso suficiente.

Pilar Ibarrola Muñoz, Javier Yáñez Gestoso (1985)

Trabajos de Estadística e Investigación Operativa

Se define en este artículo el concepto de proceso suficiente para un proceso de control, así como el de control basado en un proceso suficiente. Se demuestra a continuación que el conjunto de controles basados en un proceso suficiente forma una clase esencialmente completa; por consiguiente, dado un control, existe un control basado en el proceso suficiente que tiene el mismo coste esperado que el anterior.

Complex calculus of variations

Michel Gondran, Rita Hoblos Saade (2003)

Kybernetika

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to 𝐂 n functions in 𝐂 . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...

Composite control of the n -link chained mechanical systems

Jiří Zikmund (2008)

Kybernetika

In this paper, a new control concept for a class of underactuated mechanical system is introduced. Namely, the class of n -link chains, composed of rigid links, non actuated at the pivot point is considered. Underactuated mechanical systems are those having less actuators than degrees of freedom and thereby requiring more sophisticated nonlinear control methods. This class of systems includes among others frequently used for the modeling of walking planar structures. This paper presents the stabilization...

Computation of linear algebraic equations with solvability verification over multi-agent networks

Xianlin Zeng, Kai Cao (2017)

Kybernetika

In this paper, we consider the problem of solving a linear algebraic equation A x = b in a distributed way by a multi-agent system with a solvability verification requirement. In the problem formulation, each agent knows a few columns of A , different from the previous results with assuming that each agent knows a few rows of A and b . Then, a distributed continuous-time algorithm is proposed for solving the linear algebraic equation from a distributed constrained optimization viewpoint. The algorithm is...

Computation of realizations composed of dynamic and static parts of improper transfer matrices

Tadeusz Kaczorek (2007)

International Journal of Applied Mathematics and Computer Science

The problem of computing minimal realizations of a singular system decomposed into a standard dynamical system and a static system of a given improper transfer matrix is formulated and solved. A new notion of the minimal dynamical-static realization is introduced. It is shown that there always exists a minimal dynamical-static realization of a given improper transfer matrix. A procedure for the computation of a minimal dynamical-static realization for a given improper transfer matrix is proposed...

Computer aided design of mechatronic systems

Zbigniew Mrozek (2003)

International Journal of Applied Mathematics and Computer Science

Any successful company must react quickly to changing trends in the market. New products should be designed and manufactured quicker and cheaper than counter partners do. A shorter design time provides a distinct competitive advantage. The paper describes two approaches towards designing interdisciplinary mechatronic systems: the first is visual modelling with the UML, the second is physical modelling with Modelica.

Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems

Mikołaj Busłowicz, Andrzej Ruszewski (2012)

International Journal of Applied Mathematics and Computer Science

Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.

Computing generalized inverse systems using matrix pencil methods

Andras Varga (2001)

International Journal of Applied Mathematics and Computer Science

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil...

Currently displaying 41 – 60 of 319