Displaying 81 – 100 of 319

Showing per page

Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm

Cheng-Lin Liu, Fei Liu (2018)

Kybernetika

This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm...

Consensus-based impact-time-control guidance law for cooperative attack of multiple missiles

Qing Zhu, Xiaoli Wang, Qianyu Lin (2017)

Kybernetika

In this paper, a new guidance problem with the impact time constraint for cooperative attack of multiple missiles is investigated, which can be applied to salvo attack of anti-ship missiles. It can be used to guide multiple missiles to hit a stationary target simultaneously at a desirable impact time. The considered impact time control problem can be transformed into a range tracking problem. Then the range tracking problem can be viewed a consensus problem of multi-missile systems. As the application...

Consistent price systems for subfiltrations

Andrea Gombani, Stefan Jaschke, Wolfgang Runggaldier (2007)

ESAIM: Probability and Statistics

Asymmetric or partial information in financial markets may be represented by different filtrations. We consider the case of a larger filtration F – the natural filtration of the “model world” – and a subfiltration ^ that represents the information available to an agent in the “real world”. Given a price system on the larger filtration that is represented by a martingale measure Q and an associated numeraire S, we show that there is a canonical and nontrivial numeraire Ŝ such that the price system...

Constrained controllability of nonlinear stochastic impulsive systems

Shanmugasundaram Karthikeyan, Krishnan Balachandran (2011)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with complete controllability of a class of nonlinear stochastic systems involving impulsive effects in a finite time interval by means of controls whose initial and final values can be assigned in advance. The result is achieved by using a fixed-point argument.

Constrained portfolio liquidation in a limit order book model

Aurélien Alfonsi, Antje Fruth, Alexander Schied (2008)

Banach Center Publications

We consider the problem of optimally placing market orders so as to minimize the expected liquidity costs from buying a given amount of shares. The liquidity price impact of market orders is described by an extension of a model for a limit order book with resilience that was proposed by Obizhaeva and Wang (2006). We extend their model by allowing for a time-dependent resilience rate, arbitrary trading times, and general equilibrium dynamics for the unaffected bid and ask prices. Our main results...

Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction

Jianglin Lan, Weijie Sun, Yunjian Peng (2014)

Kybernetika

This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application...

Constrained stabilization of a dynamic systems: a case study

Franco Blanchini, S. Cotterli, G. Koruza, S. Miani, R. Siagri, Luciano Tubaro (1999)

Kybernetika

In this work we consider the problem of determining and implementing a state feedback stabilizing control law for a laboratory two-tank dynamic system in the presence of state and control constraints. We do this by exploiting the properties of the polyhedral Lyapunov functions, i. e. Lyapunov functions whose level surfaces are polyhedra, in view of their capability of providing an arbitrarily good approximation of the maximal set of attraction, which is the largest set of initial states which can...

Construction of a controller with a generalized linear immersion

Javier Diaz-Vargas, Dennis Tuyub-Puc, Celia Villanueva-Novelo (2011)

Kybernetika

Gröbner bases for modules are used to calculate a generalized linear immersion for a plant whose solutions to its regulation equations are polynomials or pseudo-polynomials. After calculating the generalized linear immersion, we build the controller which gives the robust regulation.

Construction of algebraic and difference equations with a prescribed solution space

Lazaros Moysis, Nicholas P. Karampetakis (2017)

International Journal of Applied Mathematics and Computer Science

This paper studies the solution space of systems of algebraic and difference equations, given as auto-regressive (AR) representations A(σ)β(k) = 0, where σ denotes the shift forward operator and A(σ) is a regular polynomial matrix. The solution space of such systems consists of forward and backward propagating solutions, over a finite time horizon. This solution space can be constructed from knowledge of the finite and infinite elementary divisor structure of A(σ). This work deals with the inverse...

Construction of sampling and interpolating sequences for multi-band signals. the two-band case

Sergei Avdonin, Anna Bulanova, William Moran (2007)

International Journal of Applied Mathematics and Computer Science

Recently several papers have related the production of sampling and interpolating sequences for multi-band signals to the solution of certain kinds of Wiener-Hopf equations. Our approach is based on connections between exponential Riesz bases and the controllability of distributed parameter systems. For the case of two-band signals we derive an operator whose invertibility is equivalent to the existence of a sampling and interpolating sequence, and prove the invertibility of this operator.

Construction of Sobolev spaces of fractional order with sub-riemannian vector fields

Sami Mustapha, François Vigneron (2007)

Annales de l’institut Fourier

Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.

Contents

Czesław Olech, Bronisław Jakubczyk, Jerzy Zabczyk (1985)

Banach Center Publications

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuous dependence on parameters and boundedness of solutions to a hysteresis system

Alexander M. Kamachkin, Dmitriy K. Potapov, Victoria V. Yevstafyeva (2022)

Applications of Mathematics

We analyze an ordinary differential system with a hysteresis-relay nonlinearity in two cases when the system is autonomous or nonautonomous. Sufficient conditions for both the continuous dependence on the system parameters and the boundedness of the solutions to the system are obtained. We give a supporting example for the autonomous system.

Continuous extension of order-preserving homogeneous maps

Andrew D. Burbanks, Colin T. Sparrow, Roger D. Nussbaum (2003)

Kybernetika

Maps f defined on the interior of the standard non-negative cone K in N which are both homogeneous of degree 1 and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous order-preserving continuous extension to the whole cone. It follows that the extension must have at least...

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)

Kybernetika

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Continuous-time input-output decoupling for sampled-data systems

Osvaldo Maria Grasselli, Laura Menini (1999)

Kybernetika

The problem of obtaining a continuous-time (i. e., ripple-free) input-output decoupled control system for a continuous-time linear time-invariant plant, by means of a purely discrete-time compensator, is stated and solved in the case of a unity feedback control system. Such a control system is hybrid, since the plant is continuous-time and the compensator is discrete-time. A necessary and sufficient condition for the existence of a solution of such a problem is given, which reduces the mentioned...

Currently displaying 81 – 100 of 319