Previous Page 8

Displaying 141 – 157 of 157

Showing per page

Null-controllability of some systems of parabolic type by one control force

Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.

Numerical analysis and systems theory

Stephen Campbell (2001)

International Journal of Applied Mathematics and Computer Science

The area of numerical analysis interacts with the area of control and systems theory in a number of ways, some of which are widely recognized and some of which are not fully appreciated or understood. This paper will briefly discuss some of these areas of interaction and place the papers in this volume in context.

Numerical controllability of the wave equation through primal methods and Carleman estimates

Nicolae Cîndea, Enrique Fernández-Cara, Arnaud Münch (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with the numerical computation of boundary null controls for the 1D wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. We do not apply in this work the usual duality arguments but explore instead a direct approach in the framework of global Carleman estimates. More precisely, we consider the control that minimizes over the class of admissible null...

Numerical identification of a coefficient in a parabolic quasilinear equation

Jan Neumann (1985)

Aplikace matematiky

In the article the following optimal control problem is studied: to determine a certain coefficient in a quasilinear partial differential equation of parabolic type so that the solution of a boundary value problem for this equation would minimise a given integral functional. In addition to the design and analysis of a numerical method the paper contains the solution of the fundamental problems connected with the formulation of the problem in question (existence and uniqueness of the solution of...

Numerical operations among rational matrices: standard techniques and interpolation

Petr Hušek, Michael Šebek, Jan Štecha (1999)

Kybernetika

Numerical operations on and among rational matrices are traditionally handled by direct manipulation with their scalar entries. A new numerically attractive alternative is proposed here that is based on rational matrix interpolation. The procedure begins with evaluation of rational matrices in several complex points. Then all the required operations are performed consecutively on constant matrices corresponding to each particular point. Finally, the resulting rational matrix is recovered from the...

Numerical solution of the pressing devices shape optimization problem in the glass industry

Petr Salač (2018)

Applications of Mathematics

In this contribution, we present the problem of shape optimization of the plunger cooling which comes from the forming process in the glass industry. We look for a shape of the inner surface of the insulation barrier located in the plunger cavity so as to achieve a constant predetermined temperature on the outward surface of the plunger. A rotationally symmetric system, composed of the mould, the glass piece, the plunger, the insulation barrier and the plunger cavity, is considered. The state problem...

Numerical studies of parameter estimation techniques for nonlinear evolution equations

Azmy S. Ackleh, Robert R. Ferdinand, Simeon Reich (1998)

Kybernetika

We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Currently displaying 141 – 157 of 157

Previous Page 8