Displaying 81 – 100 of 395

Showing per page

Consensus and trajectory tracking of SISO linear multi-agent systems under switching communication topologies and formation changes

Carlos López-Limón, Javier Ruiz, Alejandro Cervantes-Herrera, Antonio Ramírez-Treviño (2013)

Kybernetika

The simultaneous problem of consensus and trajectory tracking of linear multi-agent systems is considered in this paper, where the dynamics of each agent is represented by a single-input single-output linear system. In order to solve this problem, a distributed control strategy is proposed in this work, where the trajectory and the formation of the agents are achieved asymptotically even in the presence of switching communication topologies and smooth formation changes, and ensuring the closed-loop...

Consensus of a multi-agent systems with heterogeneous delays

Branislav Rehák, Volodymyr Lynnyk (2020)

Kybernetika

The paper presents an algorithm for the solution of the consensus problem of a linear multi-agent system composed of identical agents. The control of the agents is delayed, however, these delays are, in general, not equal in all agents. The control algorithm design is based on the H -control, the results are formulated by means of linear matrix inequalities. The dimension of the resulting convex optimization problem is proportional to the dimension of one agent only but does not depend on the number...

Consensus of multi-agent systems and stabilization of large-scale systems with time delays and nonlinearities - a comparison of both problems

Branislav Rehák, Volodymyr Lynnyk (2023)

Kybernetika

The problem of stabilization of large-scale systems and the consensus problem of multi-agent systems are related, similar tools for their solution are used. Therefore, they are occasionally confused. Although both problems show similar features, one can also observe important differences. A comparison of both problems is presented in this paper. In both cases, attention is paid to the explanation of the effects of the time delays. The most important fact is that, if the time delays are heterogeneous,...

Consensus seeking in multi-agent systems with an active leader and communication delays

Lixin Gao, Yutao Tang, Wenhai Chen, Hui Zhang (2011)

Kybernetika

In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus....

Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm

Cheng-Lin Liu, Fei Liu (2018)

Kybernetika

This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm...

Construction of Sobolev spaces of fractional order with sub-riemannian vector fields

Sami Mustapha, François Vigneron (2007)

Annales de l’institut Fourier

Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.

Control affine systems on solvable three-dimensional Lie groups, I

Rory Biggs, Claudiu C. Remsing (2013)

Archivum Mathematicum

We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.

Cooperative driving at isolated intersections based on the optimal minimization of the maximum exit time

Jia Wu, Abdeljalil Abbas-Turki, Florent Perronnet (2013)

International Journal of Applied Mathematics and Computer Science

Traditional traffic control systems based on traffic light have achieved a great success in reducing the average delay of vehicles or in improving the traffic capacity. The main idea of these systems is based on the optimization of the cycle time, the phase sequence, and the phase duration. The right-of-ways are assigned to vehicles of one or several movements for a specific time. With the emergence of cooperative driving, an innovative traffic control concept, Autonomous Intersection Management...

Customized crossover in evolutionary sets of safe ship trajectories

Rafał Szłapczyński, Joanna Szłapczyńska (2012)

International Journal of Applied Mathematics and Computer Science

The paper presents selected aspects of evolutionary sets of safe ship trajectories-a method which applies evolutionary algorithms and some of the assumptions of game theory to solving ship encounter situations. For given positions and motion parameters of the ships, the method finds a near optimal set of safe trajectories of all ships involved in an encounter. The method works in real time and the solutions must be returned within one minute, which enforces speeding up the optimisation process....

Data transformation technique in the data informativity approach via algebraic sequences

Yuki Tanaka, Osamu Kaneko (2024)

Kybernetika

The data-informativity approach in data-driven control focuses on data and their matching model sets for system design and analysis. The approach offers a new mathematical formulation different from model-based control and is expected to progress. In model-based control, the introduction of equivalent transformations has made system analysis and design easier and facilitated theoretical development. In this study, we focus on data transformations and their transformation of matching model sets....

Decentralized control and synchronization of time-varying complex dynamical network

Wei-Song Zhong, Jovan D. Stefanovski, Georgi M. Dimirovski, Jun Zhao (2009)

Kybernetika

A new class of controlled time-varying complex dynamical networks with similarity is investigated and a decentralized holographic-structure controller is designed to stabilize the network asymptotically at its equilibrium states. The control design is based on the similarity assumption for isolated node dynamics and the topological structure of the overall network. Network synchronization problems, both locally and globally, are considered on the ground of decentralized control approach. Each sub-controller...

Decentralized control for large-scale systems with time-varying delay and unmatched uncertainties

Wen-Jeng Liu (2011)

Kybernetika

Many real-world systems contain uncertainties and with time-varying delays, also, they have become larger and more complicated. Hence, a new decentralized variable structure control law is proposed for a class of uncertain large-scale system with time varying delay in the interconnection and time varying unmatched uncertainties in the state matrix. The proposed decentralized control law for the large-scale time-varying delay system is realized independently through the delayed terms and it can drive...

Decentralized control of interconnected linear systems with delayed states

Carlos E. de Souza (2001)

Kybernetika

This paper addresses the problems of stability analysis and decentralized control of interconnected linear systems with constant time-delays in the state of each subsystems as well as in the interconnections. We develop delay- dependent methods of stability analysis and decentralized stabilization via linear memoryless state-feedback. The proposed methods are given in terms of linear matrix inequalities. Extensions of the decentralized stabilization result to more complex control problems, such...

Currently displaying 81 – 100 of 395