Page 1

Displaying 1 – 3 of 3

Showing per page

State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra

Juri Belikov, Ülle Kotta, Maris Tõnso (2012)

Kybernetika

In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows...

Szegő's first limit theorem in terms of a realization of a continuous-time time-varying systems

Pablo Iglesias, Guoqiang Zang (2001)

International Journal of Applied Mathematics and Computer Science

It is shown that the limit in an abstract version of Szegő's limit theorem can be expressed in terms of the antistable dynamics of the system. When the system dynamics are regular, it is shown that the limit equals the difference between the antistable Lyapunov exponents of the system and those of its inverse. In the general case, the elements of the dichotomy spectrum give lower and upper bounds.

Currently displaying 1 – 3 of 3

Page 1