Displaying 41 – 60 of 95

Showing per page

Linear-wavelet networks

Roberto Galvão, Victor Becerra, João Calado, Pedro Silva (2004)

International Journal of Applied Mathematics and Computer Science

This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described. For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example involving a simulated...

Modulating element method in the identification of a generalized dynamical system

Hubert Wysocki, Marek Zellma (1995)

Applicationes Mathematicae

In this paper the identification of generalized linear dynamical differential systems by the method of modulating elements is presented. The dynamical system is described in the Bittner operational calculus by an abstract linear differential equation with constant coefficients. The presented general method can be used in the identification of stationary continuous dynamical systems with compensating parameters and for certain nonstationary compensating or distributed parameter systems.

Nonlinear system identification using heterogeneous multiple models

Rodolfo Orjuela, Benoît Marx, José Ragot, Didier Maquin (2013)

International Journal of Applied Mathematics and Computer Science

Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state spaces are not...

Numerical identification of a coefficient in a parabolic quasilinear equation

Jan Neumann (1985)

Aplikace matematiky

In the article the following optimal control problem is studied: to determine a certain coefficient in a quasilinear partial differential equation of parabolic type so that the solution of a boundary value problem for this equation would minimise a given integral functional. In addition to the design and analysis of a numerical method the paper contains the solution of the fundamental problems connected with the formulation of the problem in question (existence and uniqueness of the solution of...

Numerical studies of parameter estimation techniques for nonlinear evolution equations

Azmy S. Ackleh, Robert R. Ferdinand, Simeon Reich (1998)

Kybernetika

We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.

Observers for Canonic Models of Neural Oscillators

D. Fairhurst, I. Tyukin, H. Nijmeijer, C. van Leeuwen (2010)

Mathematical Modelling of Natural Phenomena

We consider the problem of state and parameter estimation for a class of nonlinear oscillators defined as a system of coupled nonlinear ordinary differential equations. Observable variables are limited to a few components of state vector and an input signal. This class of systems describes a set of canonic models governing the dynamics of evoked potential in neural membranes, including Hodgkin-Huxley, Hindmarsh-Rose, FitzHugh-Nagumo, and Morris-Lecar...

On determining unknown functions in differential systems, with an application to biological reactors

Éric Busvelle, Jean-Paul Gauthier (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider general nonlinear systems with observations, containing a (single) unknown function ϕ . We study the possibility to learn about this unknown function via the observations: if it is possible to determine the [values of the] unknown function from any experiment [on the set of states visited during the experiment], and for any arbitrary input function, on any time interval, we say that the system is “identifiable”. For systems without controls, we give a more or less complete...

On determining unknown functions in differential systems, with an application to biological reactors.

Éric Busvelle, Jean-Paul Gauthier (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider general nonlinear systems with observations, containing a (single) unknown function φ. We study the possibility to learn about this unknown function via the observations: if it is possible to determine the [values of the] unknown function from any experiment [on the set of states visited during the experiment], and for any arbitrary input function, on any time interval, we say that the system is “identifiable”. For systems without controls, we give a more or less complete...

Currently displaying 41 – 60 of 95