Page 1

Displaying 1 – 9 of 9

Showing per page

Test signal design for failure detection: A linear programming approach

Héctor Scola, Ramine Nikoukhah, François Delebecque (2003)

International Journal of Applied Mathematics and Computer Science

A new methodology for the design of filters that permits failure detection and isolation of dynamic systems is presented. Assuming that the normal and the faulty behavior of a process can be modeled by two linear systems subject to inequality bounded perturbations, a method for the on-line implementation of a test signal, guaranteeing failure detection, is proposed. To improve the fault detectability of the dynamic process, appropriate test signals are injected into the system. All the computations...

The finite inclusions theorem: a tool for robust design

Theodore E. Djaferis (1998)

Kybernetika

Methods for robust controller design, are an invaluable tool in the hands of the control engineer. Several methodologies been developed over the years and have been successfully applied for the solution of specific robust design problems. One of these methods, is based on the Finite Inclusions Theorem (FIT) and exploits properties of polynomials. This has led to the development of FIT-based algorithms for robust stabilization, robust asymptotic tracking and robust noise attenuation design. In this...

The HeKatE methodology. Hybrid engineering of intelligent systems

Grzegorz J. Nalepa, Antoni Ligęza (2010)

International Journal of Applied Mathematics and Computer Science

This paper describes a new approach, the HeKatE methodology, to the design and development of complex rule-based systems for control and decision support. The main paradigm for rule representation, namely, eXtended Tabular Trees (XTT), ensures high density and transparency of visual knowledge representation. Contrary to traditional, flat rule-based systems, the XTT approach is focused on groups of similar rules rather than on single rules. Such groups form decision tables which are connected into...

The tracking and regulation problem for a class of generalized systems

Antonio Tornambè (1998)

Kybernetika

The tracking and regulation problem is considered for a class of generalized systems, in case of exponential reference signals and of disturbance functions. First, the notions of steady-state response and of blocking zero, which are classical for linear time-invariant systems, are given for generalized systems. Then, the tracking and regulation problem is stated and solved for the class of generalized systems under consideration, giving a general design procedure. As a corollary of the effectiveness...

Tracking with prescribed transient behaviour

Achim Ilchmann, E. P. Ryan, C. J. Sangwin (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Universal tracking control is investigated in the context of a class 𝒮 of M -input, M -output dynamical systems modelled by functional differential equations. The class encompasses a wide variety of nonlinear and infinite-dimensional systems and contains – as a prototype subclass – all finite-dimensional linear single-input single-output minimum-phase systems with positive high-frequency gain. The control objective is to ensure that, for an arbitrary M -valued reference signal r of class W 1 , (absolutely...

Tracking with prescribed transient behaviour

Achim Ilchmann, E. P. Ryan, C. J. Sangwin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Universal tracking control is investigated in the context of a class S of M-input, M-output dynamical systems modelled by functional differential equations. The class encompasses a wide variety of nonlinear and infinite-dimensional systems and contains – as a prototype subclass – all finite-dimensional linear single-input single-output minimum-phase systems with positive high-frequency gain. The control objective is to ensure that, for an arbitrary M -valued reference signal r of class W1,∞ (absolutely...

Currently displaying 1 – 9 of 9

Page 1