Page 1

Displaying 1 – 10 of 10

Showing per page

Sampled weighted attraction control of distributed thermal scan welding

Charalabos C. Doumanidis (1999)

Kybernetika

This article addresses the problem of distributed-parameter control for a class of infinite-dimensional manufacturing processes with scanned thermal actuation, such as scan welding. This new process is implemented on a robotic GTAW laboratory setup with infrared pyrometry, and simulated by a flexible numerical computation program. An analytical linearized model, based on convolution of Green’s fields, is expressed in multivariable state-space form, with its time-variant parameters identified in-process....

Self-tuning controllers based on orthonormal functions

Jozef Hejdiš, Štefan Kozák, Ľubica Juráčková (2000)

Kybernetika

Problems of the system identification using orthonormal functions are discussed and algorithms of computing parameters of the discrete time state- space model of the plant based on the generalized orthonormal functions and the Laguerre functions are derived. The adaptive LQ regulator and the predictive controller based on the Laguerre function model are also presented. The stability and the robustness of the closed loop using the predictive controller are investigated.

Self-tuning generalized predictive control with input constraints

Andrzej Królikowski, Damian Jerzy (2001)

International Journal of Applied Mathematics and Computer Science

The handling of various input constraints in the self-tuning generalized predictive control (STGPC) problem of ARIMAXARMAX systems is considered. The methods based on the Lagrange multipliers and Lemke's algorithm are used to solve the constrained optimization problem. A self-tuning controller is implemented in an indirect way, and the considered constraints imposed on the control input signal are of the rate, amplitude and energy types. A comparative simulation study of self-tuning control system...

Simultaneous output-feedback stabilization for continuous systems in Banach spaces

Fouad M. AL-Sunni, Frank L. Lewis (1998)

Kybernetika

A design technique for the stabilization of M linear systems by one constant output-feedback controller is developed. The design equations are functions of the state and the control weighting matrices. An example of the stabilization of an aircraft at different operating points is given.

Sliding mode controller-observer design for multivariable linear systems with unmatched uncertainty

A. Jafari Koshkouei, Alan S. I. Zinober (2000)

Kybernetika

This paper presents sufficient conditions for the sliding mode control of a system with disturbance input. The behaviour of the sliding dynamics in the presence of unmatched uncertainty is also studied. When a certain sufficient condition on the gain feedback matrix of the discontinuous controller and the disturbance bound holds, then the disturbance does not affect the sliding system. The design of asymptotically stable sliding observers for linear multivariable systems is presented. A sliding...

Static output feedback controller design

Vojtech Veselý (2001)

Kybernetika

In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix,...

Structurally stable design of output regulation for a class of nonlinear systems

Celia Villanueva-Novelo, Sergej Čelikovský, Bernardino Castillo-Toledo (2001)

Kybernetika

The problem of output regulation of the systems affected by unknown constant parameters is considered here. The main goal is to find a unique feedback compensator (independent on the actual values of unknown parameters) that drives a given error (control criterion) asymptotically to zero for all values of parameters from a certain neighbourhood of their nominal value. Such a task is usually referred to as the structurally stable output regulation problem. Under certain assumptions, such a problem...

Sum-of-squares based observer design for polynomial systems with a known fixed time delay

Branislav Rehák (2015)

Kybernetika

An observer for a system with polynomial nonlinearities is designed. The system is assumed to exhibit a time delay whose value is supposed to be constant and known. The design is carried out using the sum-of-squares method. The key point is defining a suitable Lyapunov-Krasovskii functional. The resulting observer is in form of a polynomial in the observable variables. The results are illustrated by two examples.

Currently displaying 1 – 10 of 10

Page 1