Page 1

Displaying 1 – 8 of 8

Showing per page

Deadbeat control, pole placement, and LQ regulation

Vladimír Kučera (1999)

Kybernetika

Deadbeat control, a typical example of linear control strategies in discrete- time systems, is shown to be a special case of the linear-quadratic regulation. This result is obtained by drawing on the parallels between the state-space and the transfer-function design techniques.

Decoupling and pole assignment by constant output feedback

Konstadinos H. Kiritsis, Trifon G. Koussiouris (2002)

Kybernetika

In this paper a system-theoretic approach is used to solve the decoupling in combination with the arbitrary pole assignment problem by constant output feedback and a constant nonsingular input transformation. Explicit necessary and sufficient conditions are given and a procedure is described for the determination of the control law.

Design of a multivariable neural controller for control of a nonlinear MIMO plant

Stanisław Bańka, Paweł Dworak, Krzysztof Jaroszewski (2014)

International Journal of Applied Mathematics and Computer Science

The paper presents the training problem of a set of neural nets to obtain a (gain-scheduling, adaptive) multivariable neural controller for control of a nonlinear MIMO dynamic process represented by a mathematical model of Low-Frequency (LF) motions of a drillship over the drilling point at the sea bottom. The designed neural controller contains a set of neural nets that determine values of its parameters chosen on the basis of two measured auxiliary signals. These are the ship's current forward...

Direct algorithm for pole placement by state-derivative feedback for multi-inputlinear systems - nonsingular case

Taha H. S. Abdelaziz, Michael Valášek (2005)

Kybernetika

This paper deals with the direct solution of the pole placement problem by state-derivative feedback for multi- input linear systems. The paper describes the solution of this pole placement problem for any controllable system with nonsingular system matrix and nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results into a formula similar to Ackermann one. Its derivation is based on the transformation of linear...

Discrete-time predictive control with overparameterized delay-plant models and an identified cancellation order

Zdzisław Kowalczuk, Piotr Suchomski (2005)

International Journal of Applied Mathematics and Computer Science

The paper presents several solutions to the discrete-time generalized predictive (GPC) controller problem, including an anticipative filtration mechanism, which are suitable for plants with nonzero transportation delays. Necessary modifications of the GPC design procedure required for controlling plants based on their non-minimal models are discussed in detail. Although inevitably invoking the troublesome pole-zero cancellation problem, such models can be used in adaptive systems as a remedy for...

Currently displaying 1 – 8 of 8

Page 1