Page 1

Displaying 1 – 3 of 3

Showing per page

Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization

Da-Ke Gu, Da-Wei Zhang (2020)

Kybernetika

This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile,...

Poles and zeroes of nonlinear control systems

Jean-François Pommaret (2002)

Kybernetika

During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the...

Currently displaying 1 – 3 of 3

Page 1