Linear dynamical systems of higher genus.
In the case of linear dynamics, repetitive processes are a distinct class of 2D linear systems with uses in areas ranging from long-wall coal cutting and metal rolling operations to iterative learning control schemes. The main feature which makes them distinct from other classes of 2D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them for onward...
For linear control systems with coefficients determined by a dynamical system null controllability is discussed. If uniform local null controllability holds, and if the Lyapounov exponents of the homogeneous equation are all non-positive, then the system is globally null controllable for almost all paths of the dynamical system. Even if some Lyapounov exponents are positive, an irreducibility assumption implies that, for a dense set of paths, the system is globally null controllable.
In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane....
In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set...