Page 1

Displaying 1 – 2 of 2

Showing per page

Linear repetitive process control theory applied to a physical example

Krzysztof Gałkowski, Eric Rogers, Wojciech Paszke, David Owens (2003)

International Journal of Applied Mathematics and Computer Science

In the case of linear dynamics, repetitive processes are a distinct class of 2D linear systems with uses in areas ranging from long-wall coal cutting and metal rolling operations to iterative learning control schemes. The main feature which makes them distinct from other classes of 2D linear systems is that information propagation in one of the two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems theory must be developed for them for onward...

Local asymptotic stability for nonlinear state feedback delay systems

Alfredo Germani, Costanzo Manes, Pierdomenico Pepe (2000)

Kybernetika

This paper considers the problem of output control of nonlinear delay systems by means of state delayed feedback. In previous papers, through the use of a suitable formalism, standard output control problems, such as output regulation, trajectory tracking, disturbance decoupling and model matching, have been solved for a class of nonlinear delay systems. However, in general an output control scheme does not guarantee internal stability of the system. Some results on this issue are presented in this...

Currently displaying 1 – 2 of 2

Page 1