Page 1

Displaying 1 – 12 of 12

Showing per page

On adaptive control for the continuous time-varying JLQG problem

Adam Czornik, Andrzej Świernik (2005)

International Journal of Applied Mathematics and Computer Science

In this paper the adaptive control problem for a continuous infinite time-varying stochastic control system with jumps in parameters and quadratic cost is investigated. It is assumed that the unknown coefficients of the system have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Under these assumptions it is shown that the optimal value of the quadratic cost can be reached based only on the values of these limits, which, in turn, can be estimated...

On adaptive control of a partially observed Markov chain

Giovanni Di Masi, Łukasz Stettner (1994)

Applicationes Mathematicae

A control problem for a partially observable Markov chain depending on a parameter with long run average cost is studied. Using uniform ergodicity arguments it is shown that, for values of the parameter varying in a compact set, it is possible to consider only a finite number of nearly optimal controls based on the values of actually computable approximate filters. This leads to an algorithm that guarantees nearly selfoptimizing properties without identifiability conditions. The algorithm is based...

Output consensus of nonlinear multi-agent systems with unknown control directions

Yutao Tang (2015)

Kybernetika

In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaum-type control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectiveness.

Currently displaying 1 – 12 of 12

Page 1