Robust control of discrete-time hybrid systems with uncertain modal dynamics.
Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes with switched...
Simulation completed with perturbation analysis provides a new approach for the optimal control of queuing network type systems. The objective of this paper is to calculate the sensitivity range of finite zero-order perturbation, that is, to determine the maximum and minimum size of perturbation within which zero-order propagation rules can be applied. By the introduction of the concept of virtual queue and first and second level no-input and full-output matrices, an algorithm is provided which...
We propose an efficient method for finding a Chebyshev-best soluble approximation to an insoluble system of linear equations over max-plus algebra.
In this paper we are exploiting some similarities between Markov and Bellman processes and we introduce the main concepts of the paper: comparison of performance measures, and monotonicity of Bellman chains. These concepts are used to establish the main result of this paper dealing with comparison of Bellman chains.
In this article, we compare different types of representations for series with coefficients in complete idempotent semirings. Each of these representations was introduced to solve a particular problem. We show how they are or are not included one in the other and we present a common generalization of them.
The design and implementation of systems in state form has traditionally focused on minimal representations which require the least number of state variables. However, “structured redundancy” – redundancy that has been intentionally introduced in some systematic way – can be extremely important when fault tolerance is desired. The redundancy can be used to detect and correct errors or to guarantee desirable performance despite hardware or computational failures. Modular redundancy, the traditional...
Supervisory controller design to avoid deadlock in discrete-event systems modeled by timed-place Petri nets (TPPNs) is considered. The recently introduced approach of place-stretching is utilized for this purpose. In this approach, given an original TPPN (OPN), a new TPPN, called the place-stretched Petri net (PSPN), is obtained. The PSPN has the property that its marking vector is sufficient to represent its state. By using this property, a supervisory controller design approach for TPPNs to avoid...
We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.
An interesting analogy can be found between recognition of noisy, distorted, or incomplete structural patterns and analysis, modelling and control of actual discrete event systems, where different types of uncertainty can occur.
Cet article introduit une nouvelle transformation des réseaux de Petri généralisés appelée l’abstraction généralisée. C’est une réduction dont nous montrons qu’elle conserve les invariants du réseau de départ et les propriétés structurelles les plus importantes. Une fonction de transformation de marquages nous permet d’introduire l’étude de la conservation des propriétés comportementales.
Cet article introduit une nouvelle transformation des réseaux de Petri généralisés appelée l'abstraction généralisée. C'est une réduction dont nous montrons qu'elle conserve les invariants du réseau de départ et les propriétés structurelles les plus importantes. Une fonction de transformation de marquages nous permet d'introduire l'étude de la conservation des propriétés comportementales.