Displaying 21 – 40 of 54

Showing per page

Generalized solutions to hybrid dynamical systems

Ricardo G. Sanfelice, Rafal Goebel, Andrew R. Teel (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Several recent results in the area of robust asymptotic stability of hybrid systems show that the concept of a generalized solution to a hybrid system is suitable for the analysis and design of hybrid control systems. In this paper, we show that such generalized solutions are exactly the solutions that arise when measurement noise in the system is taken into account.

Geometrical characterization of observability in Interpreted Petri Nets

Israel Rivera-Rangel, Antonio Ramírez-Treviño, Luis I. Aguirre-Salas, Javier Ruiz (2005)

Kybernetika

This work is concerned with observability in Discrete Event Systems (DES) modeled by Interpreted Petri Nets (IPN). Three major contributions are presented. First, a novel geometric characterization of observability based on input-output equivalence relations on the marking sequences sets is presented. Later, to show that this characterization is well posed, it is applied to linear continuous systems, leading to classical characterizations of observability for continuous systems. Finally, this paper...

Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control

Mourad Ahmane, Laurent Truffet (2007)

Kybernetika

Haar's Lemma (1918) deals with the algebraic characterization of the inclusion of polyhedral sets. This Lemma has been involved many times in automatic control of linear dynamical systems via positive invariance of polyhedrons. More recently, it has been used to characterize stochastic comparison w.r.t. linear/integral ordering of Markov (reward) chains. In this paper we develop a state space oriented approach to the control of Discrete Event Systems (DES) based on the remark that most of control...

Mode set focused hybrid estimation

Theresa Rienmüller, Michael Hofbaur, Louise Travé-Massuyès, Mehdi Bayoudh (2013)

International Journal of Applied Mathematics and Computer Science

Estimating the state of a hybrid system means accounting for the mode of operation or failure and the current state of the continuously valued entities concurrently. Existing hybrid estimation schemes try to overcome the problem of an exponentially growing number of possible mode-sequence/continuous-state combinations by merging hypotheses and/or deducing likelihood measures to identify tractable sets of the most likely hypotheses. However, they still suffer from unnecessarily high computational...

On the coefficients of the max-algebraic characteristic polynomial and equation

Peter Butkovič (2003)

Kybernetika

No polynomial algorithms are known for finding the coefficients of the characteristic polynomial and characteristic equation of a matrix in max- algebra. The following are proved: (1) The task of finding the max-algebraic characteristic polynomial for permutation matrices encoded using the lengths of their constituent cycles is NP-complete. (2) The task of finding the lowest order finite term of the max-algebraic characteristic polynomial for a { 0 , - } matrix can be converted to the assignment problem....

On the static output feedback stabilization of deterministic finite automata based upon the approach of semi-tensor product of matrices

Zhipeng Zhang, Zengqiang Chen, Xiaoguang Han, Zhongxin Liu (2018)

Kybernetika

In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated...

On the structure of linear recurrent error-control codes

Michel Fliess (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On the structure of linear recurrent error-control codes

Michel Fliess (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On timed event graph stabilization by output feedback in dioid

B. Cottenceau, Mehdi Lhommeau, Laurent Hardouin, Jean-Louis Boimond (2003)

Kybernetika

This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to (1) stabilize a TEG without decreasing its original production rate, (2) optimize the initial marking of the feedback, (3) delay as much as possible the tokens input.

Predictability and control synthesis

Philippe Declerck (1999)

Kybernetika

Processes modeled by a timed event graph may be represented by a linear model in dioïd algebra. The aim of this paper is to make temporal control synthesis when state vector is unknown. This information loss is compensated by the use of a simple model, the “ARMA” equations, which enables to introduce the concept of predictability. The comparison of the predictable output trajectory with the desired output determines the reachability of the objective.

Rational algebra and MM functions

Ray A. Cuninghame-Green (2003)

Kybernetika

MM functions, formed by finite composition of the operators min, max and translation, represent discrete-event systems involving disjunction, conjunction and delay. The paper shows how they may be formulated as homogeneous rational algebraic functions of degree one, over (max, +) algebra, and reviews the properties of such homogeneous functions, illustrated by some orbit-stability problems.

Rational semimodules over the max-plus semiring and geometric approach to discrete event systems

Stéphane Gaubert, Ricardo Katz (2004)

Kybernetika

We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule 𝒮 n over a semiring 𝒮 is rational if it has a generating family that is a rational subset of 𝒮 n , 𝒮 n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules...

Reachability and observability of linear systems over max-plus

Michael J. Gazarik, Edward W. Kamen (1999)

Kybernetika

This paper discusses the properties of reachability and observability for linear systems over the max-plus algebra. Working in the event-domain, the concept of asticity is used to develop conditions for weak reachability and weak observability. In the reachability problem, residuation is used to determine if a state is reachable and to generate the required control sequence to reach it. In the observability problem, residuation is used to estimate the state. Finally, as in the continuous-variable...

Currently displaying 21 – 40 of 54